• Title/Summary/Keyword: equivalent load for stiffness

Search Result 117, Processing Time 0.57 seconds

A Study on the Characteristics of dynamic Behaviors for the Spatial Structures under Seismic Load (지진하중을 받는 대공간 구조물의 동적 거동 특성에 관한 연구)

  • Kim, Min-Sik;Lee, Sang-Ju;Lee, Dong-Woo;Han, Sang-Eul
    • Proceeding of KASS Symposium
    • /
    • 2005.05a
    • /
    • pp.227-235
    • /
    • 2005
  • The earthquake-resistant structural systems have to ensure the sufficient stiffness and ductility for the stability. For those purposes, recently, the performance design concept to increase the degree of absorbed energy level of structures has been proposed. One practical way of the performance design in the spatial structures is to apply the isolation system to boundary parts of roof system and sub-structure to obtain the target performance. So, it is necessary to examine the characteristics of dynamic behavior of spatial structures governed by higher modes rather than lower modes different from the cases of high rise buildings. The objectives of this paper are to develop the equivalent model to simplify the analytical processes and to investigate the dynamic behavior of roof system according to the mass and the stiffness of sub-structures as a fundamental study of performance design for the spatial structures.

  • PDF

Performance Analysis of Double-Bumped Air Foil Bearings (이중범프포일 공기베어링의 성능해석)

  • Kim, Young-Cheol;Lee, Dong-Hyun;Kim, Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.23 no.3
    • /
    • pp.123-129
    • /
    • 2007
  • This paper presents a theoretical model for the analysis of double-bumped AFBs. The stiffness and damping coefficients of the double bump vary depending on the external load and its friction coefficient. In the case of a lightly loaded condition where only the upper bump contributes to deformation, the double bump is in the single active region. In the case of a heavily loaded condition where both the upper and lower bumps contribute to deformation, the double bump is in the double active region. So the double bump can be either in the single or double active region depending on vertical deflection. The equivalent stiffness and damping coefficients of the bump system are derived from the vertical and horizontal deflection of the bump, including the friction effect. A static and dynamic performance analysis is carried out by using the finite difference method and the perturbation technique. The results of the performance analysis for a double-bumped AFB are compared with those obtained for a single-bumped AFB. This paper successfully proves that a double bumped AFB has higher load capacity, stiffness, and damping than a single-bumped AFB in a heavily loaded condition.

Dry friction losses in axially loaded cables

  • Huang, Xiaolun;Vinogradov, Oleg G.
    • Structural Engineering and Mechanics
    • /
    • v.4 no.3
    • /
    • pp.330-344
    • /
    • 1996
  • A model of a cable comprising interacting wires with dry friction forces at the interfaces is subjected to a quasi-static cyclic loading. The first cycle of this process, comprising of axial loading, unloading and reloading is investigated analytically. Explicit load-elongation relationships are obtained for all of the above phases of the cycle. An expression for the hysteretic losses is also obtained in an explicit form. It is shown that losses are proportional to the third power of the amplitude of the oscillating axial force, and are in inverse proportion to the interwire friction forces. The results obtained are used to introduce a model of a cable as a solid rod with an equivalent stiffness and damping properties of the rod material. It is shown that the stiffness of the equivalent rod is weakly nonlinear, whereas the viscous damping coefficient is proportional to the amplitude of the oscillation. Some numerical results illustrating the effect of cable parameters on the losses are given.

Prediction of Torsional Behavior for High-Rise Building Structures under Lateral Load (횡하중에 의한 고층건물의 비틀림 거동분석)

  • 서현주
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.04a
    • /
    • pp.151-160
    • /
    • 1999
  • It is recommended to have symmetric plan and elevation in structural design of hight-rise building structures to reduce torsional response of the structures. However it is not always allowed to do so due to architectural purposes. in many cases high-rise buildings are asymmetric. The purpose of this study is to predict the torsional behavior of high-rise building structures with asymmetric plan. Equivalent lateral stiffness and deformation shape factor are used for prediction of torsional response of high-rise buildings. Overall torsion of a structure is estimated by equivalent lateral stiffness and torsion of each floor is estimated by deformation factor in each 2-D lateral force resisting elements.

  • PDF

Dynamic Response Analysis of 2.5MW Wind Turbine Gearbox with Flexible Pins (유연핀을 적용한 2.5MW급 풍력발전기용 기어박스의 동응답 해석)

  • Cho, Jin-Rae;Jeong, Ki-Yong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.1
    • /
    • pp.37-44
    • /
    • 2016
  • This study is concerned with the numerical investigation of dynamic characteristics of 2.5MW-class wind turbine gearbox in which the misalignment improvement of plenary gear shafts by the flexible pins and the dynamic impact response are analyzed by the finite element method. The tooth contact between gears is modelled using the line element having the equivalent tooth stiffness and the contact ratio to accurately and effectively reflect the load transmission in the internal complex gear system. The equivalent tooth stiffness is calculated by utilizing the tooth deformation analysis and the impulse torque is applied to the input shaft for the dynamics response characteristic analysis. Through the numerical experiments, the equivalent tooth stiffness model was validated and the misalignment improvement of planetary gear shafts was confirmed from the comparison with the cases of fixed shafts at one and both ends.

Modelling of tension-stiffening in bending RC elements based on equivalent stiffness of the rebar

  • Torres, Lluis;Barris, Cristina;Kaklauskas, Gintaris;Gribniak, Viktor
    • Structural Engineering and Mechanics
    • /
    • v.53 no.5
    • /
    • pp.997-1016
    • /
    • 2015
  • The contribution of tensioned concrete between cracks (tension-stiffening) cannot be ignored when analysing deformation of reinforced concrete elements. The tension-stiffening effect is crucial when it comes to adequately estimating the load-deformation response of steel reinforced concrete and the more recently appeared fibre reinforced polymer (FRP) reinforced concrete. This paper presents a unified methodology for numerical modelling of the tension-stiffening effect in steel as well as FRP reinforced flexural members using the concept of equivalent deformation modulus and the smeared crack approach to obtain a modified stress-strain relation of the reinforcement. A closed-form solution for the equivalent secant modulus of deformation of the tensioned reinforcement is proposed for rectangular sections taking the Eurocode 2 curvature prediction technique as the reference. Using equations based on general principles of structural mechanics, the main influencing parameters are obtained. It is found that the ratio between the equivalent stiffness and the initial stiffness basically depends on the product of the modular ratio and reinforcement ratio ($n{\rho}$), the effective-to-total depth ratio (d/h), and the level of loading. The proposed methodology is adequate for numerical modelling of tension-stiffening for different FRP and steel reinforcement, under both service and ultimate conditions. Comparison of the predicted and experimental data obtained by the authors indicates that the proposed methodology is capable to adequately model the tension-stiffening effect in beams reinforced with FRP or steel bars within wide range of loading.

Joint Stiffness Tests for Precast Concrete Pavement (프리캐스트 콘크리트 포장의 하중전달 성능 실험)

  • Yang, Sung-Chul;Kim, Seong-Min;Yoo, Tae-Seok;Han, Seung-Hwan
    • International Journal of Highway Engineering
    • /
    • v.10 no.2
    • /
    • pp.229-239
    • /
    • 2008
  • This paper compares the load transfer efficiency between precast concrete pavement specimen and typical concrete pavement specimen by means of laboratory and field tests. An experimental method was developed to evaluate the load transfer efficiency of the dowel bars buried in the concrete pocket and grouted with cement mortar. The test results showed that the load transfer efficiency of the specimen for the dowel bars repaired with grout was equivalent to that of the control specimen. In addition, a series of FWD field tests were conducted on the precast pavement to evaluate the joint stiffness. The field test results revealed that the central deflection of the precast slab slightly increased but the load transfer efficiencies at the joints were almost the same as those in the typical concrete pavement slab.

  • PDF

An improved pushover analysis procedure for multi-mode seismic performance evaluation of bridges : (1) Introduction to numerical model

  • Kwak, Hyo-Gyoung;Shin, Dong-Kyu
    • Structural Engineering and Mechanics
    • /
    • v.33 no.2
    • /
    • pp.215-238
    • /
    • 2009
  • This paper introduces an improved modal pushover analysis (IMPA) which can effectively evaluate the seismic response of multi-span continuous bridge structures on the basis of modal pushover analysis (MPA). Differently from previous modal pushover analyses which cause the numerical unstability because of the occurrence of reversed relation between the pushover load and displacement, the proposed method eliminates this numerical instability and, in advance the coupling effects induced from the direct application of modal decomposition by introducing an identical stiffness ratio for each dynamic mode at the post-yielding stage together with an approximate elastic deformation. In addition to these two introductions, the use of an effective seismic load, calculated from the modal spatial force and applied as the distributed load, makes it possible to predict the dynamic responses of all bridge structures through a simpler analysis procedure than those in conventional modal pushover analyses. Finally, in order to establish validity and applicability of the proposed method, correlation studies between a rigorous nonlinear time history analysis and the proposed method were conducted for multi-span continuous bridges.

Advanced Geometrically Nonlinear FE Analysis of PSC Shell Structures (프리스트레스트 콘크리트 첼 구조물의 개선된 기하비선형 유한요소해석)

  • Oh Byung Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.195-200
    • /
    • 2001
  • Numerical procedures for the geometrically nonlinear finite element analysis of prestressed concrete shell structures under tendon-induced nonconservative loads have been presented. The equivalent load approach is employed to realize the effect of prestressing tendon. In this study, the tendon-induced nonconservative loads are rigorously formulated into the load correction stiffness matrix(LCSM) taking the characteristics of Present shell element into account. Also, improved nonlinear formulations of a shell element are used by including second order rotations in the displacement field. Numerical example shows that beneficial effect on the convergence behavior can be obtained by the realistic evaluation of tangent stiffness matrix according to the present approaches.

  • PDF

Structural matrices of a curved-beam element

  • Gimena, F.N.;Gonzaga, P.;Gimena, L.
    • Structural Engineering and Mechanics
    • /
    • v.33 no.3
    • /
    • pp.307-323
    • /
    • 2009
  • This article presents the differential system that governs the mechanical behaviour of a curved-beam element, with varying cross-section area, subjected to generalized load. This system is solved by an exact procedure or by the application of a new numerical recurrence scheme relating the internal forces and displacements at the two end-points of an increase in its centroid-line. This solution has a transfer matrix structure. Both the stiffness matrix and the equivalent load vector are obtained arranging the transfer matrix. New structural matrices have been defined, which permit to determine directly the unknown values of internal forces and displacements at the two supported ends of the curved-beam element. Examples are included for verification.