• Title/Summary/Keyword: equivalent linear model

검색결과 340건 처리시간 0.043초

Dynamic properties of a building with viscous dampers in non-proportional arrangement

  • Suarez, Luis E.;Gaviria, Carlos A.
    • Structural Engineering and Mechanics
    • /
    • 제55권6호
    • /
    • pp.1241-1260
    • /
    • 2015
  • Any rational approach to define the configuration and size of viscous fluid dampers in a structure should be based on the dynamic properties of the system with the dampers. In this paper we propose an alternative representation of the complex eigenvalues of multi degree of freedom systems with dampers to calculate new equivalent natural frequencies. Analytical expressions for the dynamic properties of a two-story building model with a linear viscous damper in the first floor (i.e. with a non-proportional damping matrix) are derived. The formulas permit to obtain the equivalent damping ratios and equivalent natural frequencies for all the modes as a function of the mass, stiffness and damping coefficient for underdamped and overdamped systems. It is shown that the commonly used formula to define the equivalent natural frequency is not applicable for this type of system and for others where the damping matrix is not proportional to the mass matrix, stiffness matrix or both. Moreover, the new expressions for the equivalent natural frequencies expose a novel phenomenon; the use of viscous fluid dampers can modify the vibration frequencies of the structure. The significance of the new equivalent natural frequencies is expounded by means of a simulated free vibration test. The proposed approach may offer a new perspective to study the effect of viscous dampers on the dynamic properties of a structure.

강판으로 보강된 비좌굴가새의 성능에 대한 해석적 연구 (An Analytical Study on the Performance of Buckling Restrained Brace Reinforced with Steel Plate)

  • 김대홍;김혁수;유정한
    • 한국공간구조학회논문집
    • /
    • 제22권1호
    • /
    • pp.51-57
    • /
    • 2022
  • In this paper, based on the finite element analysis model verified in previous studies, a new model of a buckling restrained brace reinforced with a steel plate was proposed. A design formula was proposed for the new model to dissipate energy without buckling the steel core under load protocol, and the performance of the model satisfying the design formula was evaluated by comparing it with the previous model through the results of hysteresis loop, bi-linear curve, cumulative energy dissipation capacity, and equivalent viscous damping.

비구조요소의 내진설계를 위한 등가정적 층가속도 평가 (Evaluation of Equivalent-Static Floor Acceleration for Seismic Design of Non-Structural Elements)

  • 전수찬;이철호;배창준;김성용
    • 대한건축학회논문집:구조계
    • /
    • 제36권3호
    • /
    • pp.121-128
    • /
    • 2020
  • In this paper, the ASCE 7 equivalent static approach for seismic design of non-structural elements is critically evaluated based on the measured floor acceleration data, theory of structural dynamics, and linear/nonlinear dynamic analysis of three-dimensional building models. The analysis of this study on the up-to-date database of the instrumented buildings in California clearly reveals that the measured database does not well corroborate the magnitude and the profile of the floor acceleration as proposed by ASCE 7. The basic flaws in the equivalent static approach are illustrated using elementary structural dynamics. Based on the linear and nonlinear dynamic analyses of three-dimensional case study buildings, it is shown that the magnitude and distribution of the PFA (peak floor acceleration) can significantly be affected by the supporting structural characteristics such as fundamental period, higher modes, structural nonlinearity, and torsional irregularity. In general, the equivalent static approach yields more conservative acceleration demand as building period becomes longer, and the PFA distribution in long-period buildings tend to become constant along the building height due to the higher mode effect. Structural nonlinearity was generally shown to reduce floor acceleration because of its period-lengthening effect. Torsional floor amplification as high as 250% was observed in the building model of significant torsional irregularity, indicating the need for inclusion of the torsional amplification to the equivalent static approach when building torsion is severe. All these results lead to the conclusion that, if permitted, dynamic methods which can account for supporting structural characteristics, should be preferred for rational seismic design of non-structural elements.

T-S 퍼지 모델을 이용한 역진자 시스템의 안정화 제어기 설계 (Design of Stabilizing Controller for an Inverted Pendulum System Using The T-S Fuzzy Model)

  • 배현수;권성하;정은태
    • 제어로봇시스템학회논문지
    • /
    • 제8권11호
    • /
    • pp.916-921
    • /
    • 2002
  • We presents a new method of constructing an equivalent T-S fuzzy model by using the sum of products of linearly independent scalar functions from nonlinear dynamics. This method exactly expresses nonlinear systems and automatically determines the number of rules. We design a stabilizing controller f3r ul inverted pendulum system by using the concep of parallel distributed compensation (PDC) and linear matrix inequalities (LMIs) based on the proposed T-S fuzzy modeling method. We show effectiveness of a systematically designed fuzzy controller based on the proposed T-S fuzzy modeling method through the simulation and experiment of an inverted pendulum system.

비선형 거동을 하는 비좌굴가새의 유한요소모델 검증 (Finite Element Model Verification of Buckling Restrained Brace With Nonlinear Behavior)

  • 김대홍;유정한
    • 한국공간구조학회논문집
    • /
    • 제21권2호
    • /
    • pp.81-88
    • /
    • 2021
  • In this paper, nonlinear finite element analysis was conducted based on the experimental results on buckling restrained brace. The reliability of the analytical model was verified by comparing the results of experimental studies with hysteresis loop, bi-linear curve, cumulative energy dissipation capacity, and equivalent viscous damping. A valid finite element model has been secured and will be used as basic data for finite element analysis of buckling restrained braces in the future.

동특성 시뮬레이션을 이용한 리니어 스위치드 릴럭턴스 전동기의 힘 특성 해석 (Force Characteristic Analysis of Linear Switched Reluctance Motor using Dynamic Simulation)

  • 장석명;박지훈;박유섭;김진순;최지환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 춘계학술대회 논문집 에너지변화시스템부문
    • /
    • pp.58-60
    • /
    • 2009
  • This paper deals with force characteristic analysis of linear switched reluctance motor using dynamic simulation. First, we calculated flux density of linear switched reluctance motor according to position. Second, analyzed normal force from flux density of linear switched reluctance motor according to position. Also, analysis result compares with data that is derived through a finite element analysis, and proved validity. However, linear switched reluctance motor has non linear characteristic, hence, analysis of propulsion force do not easy using analytical method. Therefore, we presented dynamic characteristic analysis model which is consisted at motor and sensor signal part, etc., and substitute circuit constant that get using magnetic equivalent circuit method, we confirmed propulsion force.

  • PDF

SOME PROPERTIES OF SIMEX ESTIMATOR IN PARTIALLY LINEAR MEASUREMENT ERROR MODEL

  • Meeseon Jeong;Kim, Choongrak
    • Journal of the Korean Statistical Society
    • /
    • 제32권1호
    • /
    • pp.85-92
    • /
    • 2003
  • We consider the partially linear model E(Y) : X$^{t}$ $\beta$+η(Z) when the X's are measured with additive error. The semiparametric likelihood estimation ignoring the measurement error gives inconsistent estimator for both $\beta$ and η(.). In this paper we suggest the SIMEX estimator for f to correct the bias induced by measurement error, and explore its properties. We show that the rational linear extrapolant is proper in extrapolation step in the sense that the SIMEX method under this extrapolant gives consistent estimator It is also shown that the SIMEX estimator is asymptotically equivalent to the semiparametric version of the usual parametric correction for attenuation suggested by Liang et al. (1999) A simulation study is given to compare two variance estimating methods for SIMEX estimator.

유효한 2차원 모델을 이용한 리니어 브레이크 성능 해석 (Performance Analysis of Linear Brake by Using Efficient 2-D Model)

  • 한필완;전연도;이주;이관섭
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1998년도 추계학술대회 논문집
    • /
    • pp.601-607
    • /
    • 1998
  • This paper presents the efficient 2-D linear brake analysis model which can compensate the lateral leakage flux by changingng the airgap length and magneto-motive force(MMF). The linkage flux of the 2-D analysis is larger than that of 3-D analysis. This is caused by the assumption in 2-D analysis that geometric and physical values are constant along the perpendicular direction(z) to the analysis region. The equivalent MMF have been calculated from the linkage flux difference between the 2-D and 3-D analyses which are performed at zero velocity. The performances of the linear brake have been analyzed effectively by using the compensated 2-D models without using 3-D FEM.

  • PDF

음향을 이용한 복합 적층판의 층간분리 예측 (Prediction of Delamination for Composite Laminates Using Sound Radiation)

  • 김성준;채동철
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.800-804
    • /
    • 2005
  • In this paper, the radiated sound pressure induced by low velocity impact is obtained by solving the Rayleigh integral equation. For structurally radiated noise, the sound field is directly coupled to the structural motion. Therefore the impact response should be analyzed. It is well known that the presence of the delamination in a composite laminate introduces a local flexibility which changes the dynamic characteristic of the structure. The 2-D simplified delamination model is used to analyze the impact response. And the 3-D non-linear finite element model is developed using gap element to avoid the overlap and penetration between the upper and lower sub-laminates at delamination region. Predicted impact response using 2-D equivalent delamination model are compared with the numerical ones from the 3-D non-linear finite element model.

  • PDF

동하중 등가 설계압을 받는 고속 경구조선 알루미늄 보강판부재의 구조응답 고찰 (Consideration of the Structural Response of High Speed Aluminum Planning Boat Stiffened Plate Member subjected to the Simplified Equivalent Dynamic Design Pressure)

  • 함주혁;강병윤;추경훈
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2004년도 학술대회지
    • /
    • pp.408-413
    • /
    • 2004
  • High speed planning boats also have been required more and more the rational strength analysis and evaluation for the optimal structural design in respect of the structural lightness according to the high speed trend. Even though the suggestion of the simple type equation for the equivalent dynamic pressure is reasonable to design the scantling of ship structure conveniently, many research activities for more reasonable improvement of the simple design pressure, have been continued to suggest the more accurate equivalent static description of tire structural response such as the deflection and stress of hull structure. In this research, we focus on the aluminum bottom stiffened plate structure in which structural scantling is mainly depend on the local loads such as dynamic or impact pressure without other load effects and structural response for the simple dynamic equivalent pressure was investigated through the structural analysis. In order to investigate the structural response of the bottom stiffened plate structure subjected to the dynamic equivalent design pressure, linear and nonlinear structural analysis of the bottom stiffened plate structure of 4.3 ton aluminum planning boat was performed based on the equivalent static applied loads which were derived from the KR regulation and representative one among various dynamic equivalent pressure equations. From above analysis results, we found that the response such as deflection and stress of plate member was similar with the response results of one plate member model with fixed boundary, which was published previous paper and in case of KR design loading, all response of stiffened plate structure were within elastic limit. Through the nonlinear analysis, nearly elastic behavior including the slight geometrical nonlinear response was dominant but plastic local zone was appeared at $85\%$ limit load. Therefore, we can say that through tire linear and nonlinear analysis, this stiffened plate member has no structural strength problem based on the yield criteria in case within $60\%$ limit load except the other strength point of view such as the fatigue and buckling problem.

  • PDF