• Title/Summary/Keyword: equivalent frequencies

Search Result 275, Processing Time 0.022 seconds

A Study on the Equivalent Model of an External Electrode Fluorescent Lamp Based on Equivalent Resistance and Capacitance Variation

  • Cho, Kyu-Min;Oh, Won-Sik;Moon, Gun-Woo;Park, Mun-Soo;Lee, Sang-Gil
    • Journal of Power Electronics
    • /
    • v.7 no.1
    • /
    • pp.38-43
    • /
    • 2007
  • An External Electrode Fluorescent Lamp (EEFL) has longer lifespan, higher power efficiency and higher luminance than a Cold Cathode Fluorescent Lamp (CCFL). Moreover, it is easy to drive them in parallel. Therefore, the EEFL is expected to quickly replace the CCFL in LCD backlight systems. However, the EEFL has more complex characteristics than the CCFL with a resistive component, because it has both a resistive component by plasma and a capacitive component by external electrode. In this paper, values of resistance and capacitance are measured at several power levels and at several operating frequencies. They are expressed by a numeral formula based on a linear approximation that represents the equivalent resistance and capacitance as a function of power. Then we made block diagram of the equivalent circuit model using numerical expressions. Simulation waveforms and experimental results are presented to verify the feasibility of the equivalent model.

Equivalent Stiffness Analysis of Rubber Bushing Considering Large Deformation and Size Effect (부싱의 대변형거동과 크기를 고려한 등가 강성 해석)

  • Lee, Hyun Seong;Sung, Myung Kyun;Kim, Heung Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.4
    • /
    • pp.271-277
    • /
    • 2017
  • In this paper, the amplitude and frequency dependent dynamic characteristics of the equivalent stiffness of a rubber bushing are investigated. A new mathematical model is proposed to explain the large deformation and size effect of a rubber bushing. The proposed model consists of elastic, viscous, and frictional stress components and the equivalent strain. The proposed model is verified using experimental results. The comparison shows that the proposed model can accurately predict the equivalent stiffness values of a rubber bushing under various magnitudes and frequencies. The developed model could be used to predict the dynamic equivalent stiffness of a rubber bushing in automotive engineering.

A new and simple analytical approach to determining the natural frequencies of framed tube structures

  • Mohammadnejad, Mehrdad;Kazemi, Hasan Haji
    • Structural Engineering and Mechanics
    • /
    • v.65 no.1
    • /
    • pp.111-120
    • /
    • 2018
  • This paper presents a new and simple solution for determining the natural frequencies of framed tube combined with shear-walls and tube-in-tube systems. The novelty of the presented approach is based on the bending moment function approximation instead of the mode shape function approximation. This novelty makes the presented solution very simpler and very shorter in the mathematical calculations process. The shear stiffness, flexural stiffness and mass per unit length of the structure are variable along the height. The effect of the structure weight on its natural frequencies is considered using a variable axial force. The effects of shear lag phenomena has been investigated on the natural frequencies of the structure. The whole structure is modeled by an equivalent non-prismatic shear-flexural cantilever beam under variable axial forces. The governing differential equation of motion is converted into a system of linear algebraic equations and the natural frequencies are calculated by determining a non-trivial solution for the system of equations. The accuracy of the proposed method is verified through several numerical examples and the results are compared with the literature.

Employing GDQ method for exploring undamped vibrational performance of CNT-reinforced porous coupled curved beam

  • Moein A. Ghandehari;Amir R. Masoodi
    • Advances in nano research
    • /
    • v.15 no.6
    • /
    • pp.551-565
    • /
    • 2023
  • Coupled porous curved beams, due to their low weight and high flexibility, have many applications in engineering. This study investigates the vibration behavior of coupled porous curved beams in different boundary conditions. The system consists of two curved beams connected by a mid-layer of elastic springs. These beams are made of various materials, such as homogenous steel foam, and composite materials with PMMA (polymethyl methacrylate) and SWCNT (single-walled carbon nanotube) used as the matrix and nanofillers, respectively. To obtain equivalent material properties, the role of mixture (RoM) was employed, followed by the implementation of the porosity function. The system's governing equations were obtained by employing FSDT and Hamilton's law. To investigate thermal vibration, temperature was implemented as a load in the governing equations. The GDQ method was used to solve these equations. To demonstrate the applicability of the GDQ method in calculating the frequencies of the system and the correctness of the developed program, a validation study was conducted. After validation, numerous examples were presented to investigate the behavior of single and coupled curved beams in various material properties and boundary conditions. The results indicate that the frequencies of the curved beams and the system depend highly on the amount of porosity (n) and the distribution pattern. The system frequencies decreased with an increase in the porosity coefficient. The stiffness of the springs had no effect on the first mode frequency but increased frequencies of other modes in a specific range. The frequencies of the system decreased with an increase in environmental temperature.

FREE VIBRATION ANALYSIS OF PERFORATED PLATE WITH SQUARE PENETRATION PATTERN USING EQUIVALENT MATERIAL PROPERTIES

  • JHUNG, MYUNG JO;JEONG, KYEONG HOON
    • Nuclear Engineering and Technology
    • /
    • v.47 no.4
    • /
    • pp.500-511
    • /
    • 2015
  • In this study, the natural frequencies of the perforated square plate with a square penetration pattern are obtained as a function of ligament efficiency using the commercial finite-element analysis code ANSYS. In addition, they are used to extract the effective modulus of elasticity under an assumption of a constant Poisson's ratio. The effective modulus of elasticity of the fully perforated square plate is applied to the modal analysis of a partially perforated square plate using a homogeneous finite-element analysis model. The natural frequencies and the corresponding mode shapes of the homogeneous model are compared with the results of the detailed finite-element analysis model of the partially perforated square plate to check the validity of the effective modulus of elasticity. In addition, the theoretical method to calculate the natural frequencies of a partially perforated square plate with fixed edges is suggested according to the Rayleigh-Ritz method.

Use of dummy antenna to monopole antenna factor (더미 안테나를 사용한 모노폴 안테나 보정계수 추출)

  • 안형배;주은정;이황재;강대현;이종악
    • Proceedings of the IEEK Conference
    • /
    • 2001.06a
    • /
    • pp.169-172
    • /
    • 2001
  • This paper has been studied a calibration techniques for monopole antenna in the frequency range 150 KHz to 30 MHz. The long wavelength associated with the low frequency, methods used to calibrate or characterize antennas at higher frequencies are not applicable. The equivalent capacitance substitution method uses a dummy antenna in place of the actual rod element See figure 1. for guidance in making a dummy antenna. Set up the matching network to be characterized and the measuring equipment as shown in Figure 2. Subtract the measured output of the matching network from the measured output of the signal generator and subtract -6 dB(for the 1 m rod). Measurements made at a sufficient number of frequencies number of frequencies to obtain a smooth curve of antenna factor.(fig 5.)

  • PDF

FEA of Langevin Type Ultrasonic Vibrator and Comparison of Stacking Characteristic of Ceramics (란쥬반형 진동자의 유한요소해석 및 세라믹 적층특성 비교)

  • 박민호;김태열;박태곤;김명호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.415-418
    • /
    • 2000
  • In this paper, we calculated equivalent circuit of Langevin type ultrasonic vibrator and designed a vibrator whose resonant frequency is 50(KHz). FEA (Finite Element Analysis) was employed to calculate the resonant frequencies and maximum displacements of designed vibrators. The computer calculated resonant frequencies were approached to the designed one. As AC voltage input the maximum displacements were shown sinusoidal changes. Terminal input admittance over a frequency range spanning the resonant frequency were calculated. ANSYS was employed to calculate resonant frequencies, displacements and terminal input admittance of vibrators

  • PDF

Static and Free Vibration Analyses of Hybrid Girders by the Equivalent Beam Theory (등가보 이론을 이용한 복합 거더의 정적 및 자유진동 해석)

  • Choi, In-Sik;Ye, In-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.5
    • /
    • pp.600-606
    • /
    • 2007
  • 3D finite element analyses of a corrugated steel web girder and a steel truss web girder are conducted to investigate the static and dynamic behaviour of the hybrid girders. And the analyses results are compared with those by the equivalent beam theory. The equivalent theory is a theory that all section properties of a truss structure are replaced by section properties of a beam including a shear coefficient. When applying the equivalent beam theory, the shear coefficient of the corrugated steel web girder is estimated as the area ratio of flange section to web section and that of the steel truss web girder is calculated by the equation proposed by Abdel. Static deflections and natural frequencies by 3D finite element analyses and those by the equivalent beam theory are in good agreement.

Free Vibration Analysis of Perforated Plate Submerged in Fluid

  • Jhung, Myung-Jo;Jo, Jong-Chull;Jeong, Kyeong-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.9
    • /
    • pp.1323-1338
    • /
    • 2006
  • An analytical method to estimate the coupled frequencies of the circular plate submerged in fluid is developed using the finite Fourier-Bessel series expansion and Rayleigh-Ritz method. To verify the validity of the analytical method developed, finite element method is used and the frequency comparisons between them are found to be in good agreement. For the perforated plate submerged in fluid, it is almost impossible to develop a finite element model due to the necessity of the fine meshing of the plate and the fluid at the same time. This necessitates the use of solid plate with equivalent material properties. Unfortunately the effective elastic constants suggested by the ASME code are found to be not valid for the modal analysis. Therefore in this study the equivalent material properties of perforated plate are suggested by performing several finite element analyses with respect to the ligament efficiencies.

Response prediction of a 50 m guyed mast under typhoon conditions

  • Law, S.S.;Bu, J.Q.;Zhu, X.Q.;Chan, S.L.
    • Wind and Structures
    • /
    • v.9 no.5
    • /
    • pp.397-412
    • /
    • 2006
  • This paper presents the wind excited acceleration responses of a 50 m guyed mast under the action of Typhoon Dujuan. The response of the structure is reconstructed from using a full finite element model and an equivalent beam-column model. The wind load is modelled based on the measured wind speed and recommendations for high-rise structures. The nonlinear time response analysis is conducted using the Newton Raphson iteration procedure. Comparative studies on the measured and computed frequencies and acceleration responses show that the torsional vibration of the structure is significant particularly in the higher vibration modes after the first few bending modes. The equivalent model, in general, gives less accurate amplitude predictions than the full model because of the omission of torsional stiffness of the mast in the vibration analysis, but the root-mean-square value is close to the measured value in general with an error of less than 10%.