• 제목/요약/키워드: equivalent frame modeling

검색결과 35건 처리시간 0.034초

Equivalent frame model and shell element for modeling of in-plane behavior of Unreinforced Brick Masonry buildings

  • Kheirollahi, Mohammad
    • Structural Engineering and Mechanics
    • /
    • 제46권2호
    • /
    • pp.213-229
    • /
    • 2013
  • Although performance based assessment procedures are mainly developed for reinforced concrete and steel buildings, URM (Unreinforced Masonry) buildings occupy significant portion of buildings in earthquake prone areas of the world as well as in IRAN. Variability of material properties, non-engineered nature of the construction and difficulties in structural analysis of masonry walls make analysis of URM buildings challenging. Despite sophisticated finite element models satisfy the modeling requirements, extensive experimental data for definition of material behavior and high computational resources are needed. Recently, nonlinear equivalent frame models which are developed assigning lumped plastic hinges to isotropic and homogenous equivalent frame elements are used for nonlinear modeling of URM buildings. The equivalent frame models are not novel for the analysis of masonry structures, but the actual potentialities have not yet been completely studied, particularly for non-linear applications. In the present paper an effective tool for the non-linear static analysis of 2D masonry walls is presented. The work presented in this study is about performance assessment of unreinforced brick masonry buildings through nonlinear equivalent frame modeling technique. Reliability of the proposed models is tested with a reversed cyclic experiment conducted on a full scale, two-story URM building at the University of Pavia. The pushover curves were found to provide good agreement with the experimental backbone curves. Furthermore, the results of analysis show that EFM (Equivalent Frame Model) with Dolce RO (rigid offset zone) and shell element have good agreement with finite element software and experimental results.

Finite Element Modeling and Nonlinear Analysis for Seismic Assessment of Off-Diagonal Steel Braced RC Frame

  • Ramin, Keyvan;Fereidoonfar, Mitra
    • International Journal of Concrete Structures and Materials
    • /
    • 제9권1호
    • /
    • pp.89-118
    • /
    • 2015
  • The geometric nonlinearity of off-diagonal bracing system (ODBS) could be a complementary system to covering and extending the nonlinearity of reinforced concrete material. Finite element modeling is performed for flexural frame, x-braced frame and the ODBS braced frame system at the initial phase. Then the different models are investigated along various analyses. According to the experimental results of flexural and x-braced frame, the verification is done. Analytical assessments are performed in according to three dimensional finite element modeling. Nonlinear static analysis is considered to obtain performance level and seismic behaviour, and then the response modification factors calculated from each model's pushover curve. In the next phase, the evaluation of cracks observed in the finite element models, especially for RC members of all three systems is performed. The finite element assessment is performed on engendered cracks in ODBS braced frame for various time steps. The nonlinear dynamic time history analysis accomplished in different stories models for three records of Elcentro, Naghan and Tabas earthquake accelerograms. Dynamic analysis is performed after scaling accelerogram on each type of flexural frame, x-braced frame and ODBS braced frame one by one. The base-point on RC frame is considered to investigate proportional displacement under each record. Hysteresis curves are assessed along continuing this study. The equivalent viscous damping for ODBS system is estimated in according to references. Results in each section show the ODBS system has an acceptable seismic behaviour and their conclusions have been converged when the ODBS system is utilized in reinforced concrete frame.

등가 스트럿 모델을 이용한 조적조 채움벽 골조의 내진성능평가 (Seismic Performance Evaluation of Masonry-Infilled Frame Structures using Equivalent Strut Models)

  • 박지훈;전성하;강경수
    • 한국지진공학회논문집
    • /
    • 제16권1호
    • /
    • pp.47-59
    • /
    • 2012
  • 본 연구에서는 학교건물에서 나타나는 전형적인 조적조 채움벽 골조의 내진성능을 등가 스트럿 모델을 통해 평가하였다. 순수골조모델, 중심스트럿모델 및 편심스트럿모델의 세 가지 모형화 방법을 채택하였고, 문헌상으로 얻을 수 있는 범위의 스트럿 강성과 강도를 적용하여 거동특성의 차이를 분석하였다. 역량스펙트럼에 의해 산정된 성능점에서의 변위 및 손상정도에 큰 차이가 나타났으며, 채움벽은 순수골조모델과 비교할 때 중심스트럿모델에서는 유리하게, 편심스트럿모델에서는 불리하게 작용하는 것으로 나타났다. 최종극한변위에서의 거동 또한 모형화 방법 및 재료 속성에 따라서 최대강도, 층간변위, 파괴된 부재 수 및 위치 등에 큰 차이가 나타났다.

직렬-병렬 공진 무선전력전송 시스템의 동기 좌표계 모델 (DQ Synchronous Reference Frame Model of a Series-Parallel Tuned Inductive Power Transfer System)

  • 노은총;이상민;이승환
    • 전력전자학회논문지
    • /
    • 제25권6호
    • /
    • pp.477-483
    • /
    • 2020
  • This study proposes a DQ synchronous reference frame model of a series-parallel tuned inductive power transfer (SP-IPT) system. The wireless power transmission system experiences control difficulty because the transmitter-side controller cannot directly measure the receiver-side load voltages and currents. Therefore, a control-oriented circuit model that shows the dynamics of the IPT system is required to achieve a well-behaved controller. In this study, an equivalent circuit model of the SP-IPT system in a synchronously rotating reference frame is proposed using the single-phase DQ transformation technique. The proposed circuit model is helpful in modeling the dynamics of the voltages and currents of the transmitter- and receiver-side resonant tanks and loads. The proposed circuit model is evaluated using frequency- and time-domain simulation results.

Analytical modeling of masonry infills with openings

  • Kakaletsis, D.
    • Structural Engineering and Mechanics
    • /
    • 제31권4호
    • /
    • pp.423-437
    • /
    • 2009
  • In order to perform a step-by-step force-displacement response analysis or dynamic time-history analysis of large buildings with masonry infilled R/C frames, a continuous force-deformation model based on an equivalent strut approach is proposed for masonry infill panels containing openings. The model, which is applicable for degrading elements, can be implemented to replicate a wide range of monotonic force-displacement behaviour, resulting from different design and geometry, by varying the control parameters of the model. The control parameters of the proposed continuous model are determined using experimental data. The experimental program includes fifteen 1/3-scale, single-story, single-bay reinforced concrete frame specimens subjected to lateral cyclic loading. The parameters investigated include the shape, the size, the location of the opening and the infill compressive strength. The actual properties of the infill and henceforth the characteristics needed for the diagonal strut model are based on the assessment of its lateral resistance by the subtraction of the response of the bare frame from the response of the infilled frame.

Modeling of the lateral stiffness of masonry infilled steel moment-resisting frames

  • Lemonis, Minas E.;Asteris, Panagiotis G.;Zitouniatis, Dimitrios G.;Ntasis, Georgios D.
    • Structural Engineering and Mechanics
    • /
    • 제70권4호
    • /
    • pp.421-429
    • /
    • 2019
  • This paper presents an analytical model for the estimation of initial lateral stiffness of steel moment resisting frames with masonry infills. However, rather than focusing on the single bay-single storey substructure, the developed model attempts to estimate the global stiffness of multi-storey and multi-bay frames, using an assembly of equivalent springs and taking into account the shape of the lateral loading pattern. The contribution from each infilled frame panel is included as an individual spring, whose properties are determined on the basis of established diagonal strut macro-modeling approaches from the literature. The proposed model is evaluated parametrically against numerical results from frame analyses, with varying number of frame stories, infill openings, masonry thickness and modulus of elasticity. The performance of the model is evaluated and found quite satisfactory.

RF대역에서의 반도체 package 특성 측정에 관한 연구 (A Study on Measurement of Semiconductor Package in RF Regime)

  • 박현일;김기혁;황성우
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 추계종합학술대회 논문집(2)
    • /
    • pp.108-111
    • /
    • 2000
  • The electrical characteristics of MQFP packages have been measured in RF regime. The s-parameter of the lead frame has been measured using the test fixture on which the do-capped package was mounted. A simple lumped equivalent circuit modeling of the lead frame and the test fixture can provide reasonable model parameters up to the frequency of 200 MHz.

  • PDF

Development of a simplified equivalent braced frame model for steel plate shear wall systems

  • Chatterjee, Arghya Kamal;Bhowmick, Anjan;Bagchi, Ashutosh
    • Steel and Composite Structures
    • /
    • 제18권3호
    • /
    • pp.711-737
    • /
    • 2015
  • Steel Plate Shear Walls (SPSWs) have been accepted widely as an effective lateral load resisting system. For seismic performance evaluation of a multi-story building with SPSWs, detailed finite element models or a strip model can be used to represent the SPSW components. However, such models often require significant effort for tall or medium height buildings. In order to simplify the analysis process, discrete elements for the framing members can be used. This paper presents development of a simplified equivalent braced model to study the behavior of the SPSWs. The proposed model is expected to facilitate a simplification to the structural modeling of large buildings with SPSWs in order to evaluate the seismic performance using regular structural analysis tools. It is observed that the proposed model can capture the global behavior of the structures quite accurately and potentially aid in the performance-based seismic design of SPSW buildings.

Structural health rating (SHR)-oriented 3D multi-scale finite element modeling and analysis of Stonecutters Bridge

  • Li, X.F.;Ni, Y.Q.;Wong, K.Y.;Chan, K.W.Y.
    • Smart Structures and Systems
    • /
    • 제15권1호
    • /
    • pp.99-117
    • /
    • 2015
  • The Stonecutters Bridge (SCB) in Hong Kong is the third-longest cable-stayed bridge in the world with a main span stretching 1,018 m between two 298 m high single-leg tapering composite towers. A Wind and Structural Health Monitoring System (WASHMS) is being implemented on SCB by the Highways Department of The Hong Kong SAR Government, and the SCB-WASHMS is composed of more than 1,300 sensors in 15 types. In order to establish a linkage between structural health monitoring and maintenance management, a Structural Health Rating System (SHRS) with relevant rating tools and indices is devised. On the basis of a 3D space frame finite element model (FEM) of SCB and model updating, this paper presents the development of an SHR-oriented 3D multi-scale FEM for the purpose of load-resistance analysis and damage evaluation in structural element level, including modeling, refinement and validation of the multi-scale FEM. The refined 3D structural segments at deck and towers are established in critical segment positions corresponding to maximum cable forces. The components in the critical segment region are modeled as a full 3D FEM and fitted into the 3D space frame FEM. The boundary conditions between beam and shell elements are performed conforming to equivalent stiffness, effective mass and compatibility of deformation. The 3D multi-scale FEM is verified by the in-situ measured dynamic characteristics and static response. A good agreement between the FEM and measurement results indicates that the 3D multi-scale FEM is precise and efficient for WASHMS and SHRS of SCB. In addition, stress distribution and concentration of the critical segments in the 3D multi-scale FEM under temperature loads, static wind loads and equivalent seismic loads are investigated. Stress concentration elements under equivalent seismic loads exist in the anchor zone in steel/concrete beam and the anchor plate edge in steel anchor box of the towers.

Interaction analysis of three storeyed building frame supported on pile foundation

  • Rasal, S.A.;Chore, H.S.;Sawant, V.A.
    • Coupled systems mechanics
    • /
    • 제7권4호
    • /
    • pp.455-483
    • /
    • 2018
  • The study deals with physical modeling of a typical three storeyed building frame supported by a pile group of four piles ($2{\times}2$) embedded in cohesive soil mass using three dimensional finite element analysis. For the purpose of modeling, the elements such as beams, slabs and columns, of the superstructure frame; and that of the pile foundation such as pile and pile cap are descretized using twenty noded isoparametric continuum elements. The interface between the pile and the soil is idealized using sixteen node isoparametric surface element. The soil elements are modeled using eight nodes, nine nodes and twelve node continuum elements. The present study considers the linear elastic behaviour of the elements of superstructure and substructure (i.e., foundation). The soil is assumed to behave non-linear. The parametric study is carried out for studying the effect of soil- structure interaction on response of the frame on the premise of sub-structure approach. The frame is analyzed initially without considering the effect of the foundation (non-interaction analysis) and then, the pile foundation is evaluated independently to obtain the equivalent stiffness; and these values are used in the interaction analysis. The spacing between the piles in a group is varied to evaluate its effect on the interactive behaviour of frame in the context of two embedment depth ratios. The response of the frame included the horizontal displacement at the level of each storey, shear force in beams, axial force in columns along with the bending moments in beams and columns. The effect of the soil- structure interaction is observed to be significant for the configuration of the pile groups and in the context of non-linear behaviour of soil.