• 제목/요약/키워드: equivalent frame model

검색결과 121건 처리시간 0.029초

Seismic assessment of mixed masonry-reinforced concrete buildings by non-linear static analyses

  • Cattari, S.;Lagomarsino, S.
    • Earthquakes and Structures
    • /
    • 제4권3호
    • /
    • pp.241-264
    • /
    • 2013
  • Since the beginning of the twentieth century, the progressive and rapid spread of reinforced concrete (RC) has led to the adoption of mixed masonry-RC solutions, such as the confined masonry. However, together with structures conceived with a definite role for earthquake behaviour, the spreading of RC technology has caused the birth of mixed solutions inspired more by functional aspects than by structural ones, such as: internal masonry walls replaced by RC frames, RC walls inserted to build staircases or raising made from RC frames. Usually, since these interventions rise from a spontaneous build-up, any capacity design or ductility concepts are neglected being designed only to bear vertical loads: thus, the vulnerability assessment of this class becomes crucial. To investigate the non-linear seismic response of these structures, suitable models and effective numerical tools are needed. Among the various modelling approaches proposed in the literature and codes, the authors focus their attention on the equivalent frame model. After a brief description of the adopted model and its numerical validation, the authors aim to point out some specific peculiarities of the seismic response of mixed masonry-RC structures and their repercussions on safety verification procedures (referring in particular way to the non-linear static ones). In particular, the results of non-linear static analyses performed parametrically to various configurations representative of different interventions are discussed.

RF대역에서의 반도체 package 특성 측정에 관한 연구 (A Study on Measurement of Semiconductor Package in RF Regime)

  • 박현일;김기혁;황성우
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 추계종합학술대회 논문집(2)
    • /
    • pp.108-111
    • /
    • 2000
  • The electrical characteristics of MQFP packages have been measured in RF regime. The s-parameter of the lead frame has been measured using the test fixture on which the do-capped package was mounted. A simple lumped equivalent circuit modeling of the lead frame and the test fixture can provide reasonable model parameters up to the frequency of 200 MHz.

  • PDF

파형강판벽의 등가 양방향 대각 스트럿 모델을 이용한 기존 건물의 내진성능 평가 (Seismic Performance Evaluation of Existing Buildings Using Equivalent Double Diagonal Strut Model for Corrugated Steel Plate Walls)

  • 이창환;손주기
    • 한국공간구조학회논문집
    • /
    • 제20권1호
    • /
    • pp.87-94
    • /
    • 2020
  • A corrugated steel plate wall (CSPW) system is advantageous to secure the strength and stiffness required for lateral force resistance because of its high out-of-plane stability. It can also stably dissipate large amounts of energy even after peak strength. In this paper, a preliminary study has been carried out to use the CSPW system in the seismic retrofit of existing reinforced concrete (RC) moment frame buildings. The seismic performance for an example building was evaluated, and then a step-by-step retrofit design procedure for the CSPW was proposed. An equivalent analytical model of the CSPW was also introduced for a practical analysis of the retrofitted building, and the strengthening effect was finally evaluated based on the results of nonlinear analysis.

매입형 영구자석 동기전동기 (IPMSMs) 특성해석 프로그램 (FEMCAD) 개발 (Development of Characteristics Analysis Program (FEMCAD) for IPMSMs)

  • 김영균;류세현;정인성;허진;성하경
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1035-1036
    • /
    • 2007
  • This paper presents the characteristics analysis of Interior Permanent Magnet Synchronous Motors(IPMSMs). The development of this program is based on Matlab. In oder to achieve the development of the program, basis algorithm for IPMSMs analysis took advantage of equivalent magnetic circuit analysis technique. The equivalent magnetic circuit analysis for IPMSMs are based on a rotate synchronous d-q reference frame. The mathematical model of the d-q frame voltage equations is used frequently for the analysis of IPMSMs. This program can consider a cross saturation effect and a iron loss and mechanical loss, and provide fast analysis results of IPMSMs characteristics.

  • PDF

Development of a simplified equivalent braced frame model for steel plate shear wall systems

  • Chatterjee, Arghya Kamal;Bhowmick, Anjan;Bagchi, Ashutosh
    • Steel and Composite Structures
    • /
    • 제18권3호
    • /
    • pp.711-737
    • /
    • 2015
  • Steel Plate Shear Walls (SPSWs) have been accepted widely as an effective lateral load resisting system. For seismic performance evaluation of a multi-story building with SPSWs, detailed finite element models or a strip model can be used to represent the SPSW components. However, such models often require significant effort for tall or medium height buildings. In order to simplify the analysis process, discrete elements for the framing members can be used. This paper presents development of a simplified equivalent braced model to study the behavior of the SPSWs. The proposed model is expected to facilitate a simplification to the structural modeling of large buildings with SPSWs in order to evaluate the seismic performance using regular structural analysis tools. It is observed that the proposed model can capture the global behavior of the structures quite accurately and potentially aid in the performance-based seismic design of SPSW buildings.

Infilled frames: developments in the evaluation of the stiffening effect of infills

  • Papia, M.;Cavaleri, L.;Fossetti, M.
    • Structural Engineering and Mechanics
    • /
    • 제16권6호
    • /
    • pp.675-693
    • /
    • 2003
  • In order to consider the modified seismic response of framed structures in the presence of masonry infills, proper models have to be formulated. Because of the complexity of the problem, a careful definition of a diagonal pin-jointed strut, able to represent the horizontal force-interstorey displacement cyclic law of the actual infill, may be a solution. In this connection the present paper shows a generalized criterion for the determination of the ideal cross-section of the strut mentioned before. The procedure is based on the equivalence between the lateral stiffness of the actual infilled frame scheme during the conventional elastic stage of the response and the lateral stiffness of the same frame stiffened by a strut at the same stage. Unlike the usual empirical approaches available in the literature, the proposed technique involves the axial stiffness of the columns of the frame more than their flexural stiffness. Further, the influence of the bidimensional behaviour of the infill is stressed and, consequently, the dependence of the dimensions of the equivalent pin-jointed strut on the Poisson ratio of the material constituting the infill is also shown. The proposed approach is extended to the case of infills with openings, which is very common in practical applications.

골조형(骨造型) 가구구조설계(家具構造設計)에의 유한요소해석 응용 (Finite Elements Analysis Application to the Structural Design of the Frame Type Furniture)

  • 정우양;카알 A. 에켈만
    • Journal of the Korean Wood Science and Technology
    • /
    • 제23권3호
    • /
    • pp.8-15
    • /
    • 1995
  • This analytical study was carried out to make quality and productivity up in designing the frame-type furniture with semi-rigid joint by understanding the mechanical and structural behavior of the joint and by evaluating the validity of application of the time-saving Finite Element Method to its structural analysis. Slope deflection equation for rigid joint was modified to describe the moment-rotation behavior of semi-rigid joint and the joint stiffness factor(Z) could be calculated to lessen the experimental expense. It was proved that Finite Element Analysis with imaginary elements having equivalent MOE to the semi-rigid joint could be the alternative method for the structural analysis of the frame-type furniture, comparing the internal rotation of the 2-dimensional beam-to-column model with two-pin(wooden dowel) from the finite element method with other available theoretical and experimental rotation value.

  • PDF

Structural health rating (SHR)-oriented 3D multi-scale finite element modeling and analysis of Stonecutters Bridge

  • Li, X.F.;Ni, Y.Q.;Wong, K.Y.;Chan, K.W.Y.
    • Smart Structures and Systems
    • /
    • 제15권1호
    • /
    • pp.99-117
    • /
    • 2015
  • The Stonecutters Bridge (SCB) in Hong Kong is the third-longest cable-stayed bridge in the world with a main span stretching 1,018 m between two 298 m high single-leg tapering composite towers. A Wind and Structural Health Monitoring System (WASHMS) is being implemented on SCB by the Highways Department of The Hong Kong SAR Government, and the SCB-WASHMS is composed of more than 1,300 sensors in 15 types. In order to establish a linkage between structural health monitoring and maintenance management, a Structural Health Rating System (SHRS) with relevant rating tools and indices is devised. On the basis of a 3D space frame finite element model (FEM) of SCB and model updating, this paper presents the development of an SHR-oriented 3D multi-scale FEM for the purpose of load-resistance analysis and damage evaluation in structural element level, including modeling, refinement and validation of the multi-scale FEM. The refined 3D structural segments at deck and towers are established in critical segment positions corresponding to maximum cable forces. The components in the critical segment region are modeled as a full 3D FEM and fitted into the 3D space frame FEM. The boundary conditions between beam and shell elements are performed conforming to equivalent stiffness, effective mass and compatibility of deformation. The 3D multi-scale FEM is verified by the in-situ measured dynamic characteristics and static response. A good agreement between the FEM and measurement results indicates that the 3D multi-scale FEM is precise and efficient for WASHMS and SHRS of SCB. In addition, stress distribution and concentration of the critical segments in the 3D multi-scale FEM under temperature loads, static wind loads and equivalent seismic loads are investigated. Stress concentration elements under equivalent seismic loads exist in the anchor zone in steel/concrete beam and the anchor plate edge in steel anchor box of the towers.

등가 1 자유도계에 의한 철근콘크리트 모멘트 골조구조의 비선형 지진응답 평가법의 검토 (Evaluation of Nonlinear Response for Moment Resisting Reinforced Concrete Frames Based on Equivalent SDOF System)

  • 송호산;전대한
    • 한국지진공학회논문집
    • /
    • 제7권1호
    • /
    • pp.9-16
    • /
    • 2003
  • 건축구조물의 내진성능을 효율적으로 평가하기 위해서는 다자유도계 구조물을 등가 1자유도계로 표현하는 것이 필요하다. 본 연구는 다층 철근콘크리트 골조구조를 등가 1자유도계로 치환하는 방법을 제시하였다. 다층 철근콘크리트 모멘트 골조를 등가 1자유도계로 치환하여 모델화에 따른 비선형 시간이력해석을 통하여 다자유도계 구조물의 축약 방법의 타당성을 검토하는 것이 목적이다. 다층 골조구조의 정적 비선형 해석을 수행하여, 등가 1자유도계의 복원력 모델을 설정하였다. 다층 골조 구조의 비선형 시간이력해석 응답치와 등가 1자유도계의 시간이력해석 응답치를 비교하여, 등가 1자유도계 모델의 타당성을 검증하였다. 다층 철근콘크리트 골조구조를 등가 1자유도계로 치환하여 비선형 지진응답을 구하는 방법은 충분히 그 타당성이 있다는 것이 확인되었다. 다층 철근콘크리트 골조구조의 대표변위로서 1차모드참여 yector$_1$,$\beta${$_1$$\mu$}= 1인 높이가 등가 1자유도계의 응답을 가장 근사하게 나타내는 것을 알 수 있었다. 등가 1자유도계의 지진응답해석에 사용하는 복원력 모델의 이력곡선에 따라 응답파형에 차이가 생기므로, 실제 frame 구조의 복원력 특성을 반영한 이력모델을 선정하는 것이 중요하다.

Characterization and behaviors of single walled carbon nanotube by equivalent-continuum mechanics approach

  • Eltaher, Mohamed A.;Almalki, Talaal A.;Ahmed, Khaled I.E.;Almitani, Khalid H.
    • Advances in nano research
    • /
    • 제7권1호
    • /
    • pp.39-49
    • /
    • 2019
  • This paper focuses on two main objectives. The first one is to exploit an energy equivalent model and finite element method to evaluate the equivalent Young's modulus of single walled carbon nanotubes (SWCNTs) at any orientation angle by using tensile test. The calculated Young's modulus is validated with published experimental results. The second target is to exploit the finite element simulation to investigate mechanical buckling and natural frequencies of SWCNTs. Energy equivalent model is presented to describe the atomic bonding interactions and their chemical energy with mechanical structural energies. A Program of Nanotube modeler is used to generate a geometry of SWCNTs structure by defining its chirality angle, overall length of nanotube and bond length between two adjacent nodes. SWCNTs are simulated as a frame like structure; the bonds between each two neighboring atoms are treated as isotropic beam members with a uniform circular cross section. Carbon bonds is simulated as a beam and the atoms as nodes. A finite element model using 3D beam elements is built under the environment of ANSYS MAPDL environment to simulate a tensile test and characterize equivalent Young's modulus of whole CNT structure. Numerical results are presented to show critical buckling loads, axial and transverse natural frequencies of SWCNTs with different orientation angles and lengths. The understanding of mechanical behaviors of CNTs are essential in developing such structures due to their great potential in wide range of engineering applications.