• Title/Summary/Keyword: equivalent flexural strength

Search Result 75, Processing Time 0.025 seconds

Consideration on Usability of Modified Sulfur of Low-Slump Concrete (저슬럼프 콘크리트의 개질유황 사용성에 대한 검토)

  • Shin, Hyo-Chul;Kim, Gyu-Yong;Kim, Jung-Hyun;Kim, Jin-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.109-110
    • /
    • 2015
  • In this study, fresh state properties and mechanical properties of low slump concrete which is applied to road pavement have been evaluated by mixing modified sulfur. As results, influence of mixing modified sulfur on the workability was low. Also, compressive strength, and flexural strength tend to decrese with increasing addition rate of modified sulfur. However compressive strength, and flexural strength of modified sulfur concrete were equivalent with that of plain concrete.

  • PDF

Effects of Transverse Reinforcement on Flexural Strength and Ductility of High-Strength Concrete Columns (횡보강근에 따른 고강도 콘크리트 기둥의 휨강도와 연성)

  • 황선경;윤현도;정수영
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.3
    • /
    • pp.365-372
    • /
    • 2002
  • This experimental investigation was conducted to examine the behavior of eight a third scale columns made of high-strength concrete(HSC). The columns were subjected to constant axial load corresponding to target value of 30 percent of the column axial load capacity and a cyclic horizontal load-inducing reversed bending moment. The variables studied in this research are the volumetric ratio of transverse reinforcement(Ps=1.58, 2.25 %), tie configuration(hoop-type, cross-type, diagonal-type) and tie yield strength(fy=5,600, 7,950 kgf/$\textrm{cm}^2$). Test results indicated that the flexural strength of all the columns did not exceed calculated flexural capacities based on the equivalent concrete stress block used in current design code. Columns with 42 percent higher amounts of transverse reinforcement than that required by seismic provisions of ACI 318-99 were shown ductile behavior. With axial load of 30 percent of the axial load capacity, the use of high-strength steel as transverse reinforcement may lead to equal or higher ductility than would be achieved with low-strength steel.

Compression tests of cold-formed channel sections with perforations in the web

  • Kwon, Young Bong;Kim, Gap Deuk;Kwon, In Kyu
    • Steel and Composite Structures
    • /
    • v.16 no.6
    • /
    • pp.657-679
    • /
    • 2014
  • This paper describes a series of compression tests performed on cold-formed steel channel sections with perforations in the web (thermal studs) fabricated from a galvanized steel plate whose thickness ranged from 1.0 mm to 1.6 mm and nominal yield stress was 295 MPa. The structural behavior and performance of thermal studs undergoing local, distortional, or flexural-torsional buckling were investigated experimentally and analytically. The compression tests indicate that the slits in the web had significant negative effects on the buckling and ultimate strength of thin-walled channel section columns. The compressive strength of perforated thermal studs was estimated using equivalent solid channel sections of reduced thickness instead of the studs. The direct strength method, a newly developed and adopted alternative to the effective width method for designing cold-formed steel sections in the AISI Standard S100 (2004) and AS/NZS 4600 (Standard Australia 2005), was calibrated to the test results for its application to cold-formed channel sections with slits in the web. The results verify that the DSM can predict the ultimate strength of channel section columns with slits in the web by substituting equivalent solid sections of reduced thickness for them.

A study on the flexural toughness evaluation method of steel fiber reinforced shotcrete (강섬유 보강 숏크리트의 휨인성 평가 방법 연구)

  • 김재동;김덕영
    • Tunnel and Underground Space
    • /
    • v.10 no.2
    • /
    • pp.196-210
    • /
    • 2000
  • This study was aimed to verify the validity of the flexural toughness evaluation method of steel fiber reinforced shotcrete(SFRS) currently being adopted by Korea Highway Corporation(KHC). Total 33 beam specimens using six different kinds of steel fiber products were prepared at tunnel construction sites and flexural toughness tests were executed at laboratory. Equivalent flexural strengths and toughness quotients were evaluated from the tests following the KHC guide iud these were compared with the quality grades determined under the guides proposed by ASTM, ITA and EFNARC. To discard the disadvantage that the toughness quotient could be influenced by flexural strength when following the KHC guide, a modification substituting the designed flexural strength for the flexural strength in the toughness quotient calculation formula was proposed to rate the quality of SFRS more adequately.

  • PDF

Distribution of the Equivalent Rectangular Stress Block for High-Strength Polymer Concrete Beams (고강도 폴리머 콘크리트보의 등가직사각형 응력분포)

  • 김관호;연규석;김남길;조규우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.915-920
    • /
    • 2001
  • This study was conducted to analysis the distribution of the rectangular stress block for high-strength polymer concrete beam. C-shaped specimens were produced and tested to compute parameters of the rectangular stress block. They were $\kappa_{1}$ = 0.73, $\kappa_{3}$ = 0.94 and $\gamma$= 0.845, respectively. Experimental value of flexural strength of beam was same to be compared with theoretical value. But there is desirable to need many experimental data in order to exact design of polymer concrete structure.

  • PDF

Effects of Transverse Reinforcement on Strength and Ductility of High-Strength Concrete Columns

  • Hwang, Sun Kyoung;Lim, Byung Hoon;Kim, Chang Gyo;Yun, Hyun Do;Park, Wan Shin
    • Architectural research
    • /
    • v.7 no.1
    • /
    • pp.39-48
    • /
    • 2005
  • Main objective of this research is to evaluate performance of high-strength concrete (HSC) columns for ductility and strength. Eight one-third scale columns with compressive strength of 69 MPa were subjected to a constant axial load corresponding to 30 % of the column axial load capacity and a cyclic horizontal load-inducing reversed bending moment. The variables studied in this research are the volumetric ratio of transverse reinforcement (${\rho}_s=1.58$, 2.25 %), tie configuration (Type H, Type C and Type D) and tie yield strength ($f_{yh}=549$ and 779 MPa). Test results show that the flexural strength of every column exceeds the calculated flexural capacity based on the equivalent concrete stress block used in the current design code. Columns with 42 % higher amounts of transverse reinforcement than that required by seismic provisions of ACI 318-02 showed ductile behaviour, showing a displacement ductility factor (${\mu}_{{\Delta}u}$) of 3.69 to 4.85, and a curvature ductility factor (${\mu}_{{\varphi}u}$) of over 10.0. With an axial load of 30 % of the axial load capacity, it is recommended that the yield strength of transverse reinforcement be held equal to or below 549 MPa.

Prediction of Equivalent Stress Block Parameters for High Strength Concrete (고강도 콘크리트의 등가응력 매개변수 추정에 관한 연구)

  • Lee, Do Hyung;Jeon, Jeongmoon;Jeong, Minchul;Kong, Jungsik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3A
    • /
    • pp.227-234
    • /
    • 2011
  • Recently, a high strength concrete of more than 40 MPa has been increasingly used in practice. However, use of the high strength concrete may influence on design parameters, particularly stress distribution. This is very true since the current everyday practice employs equivalent rectangular stress distribution that is derived from normal strength concrete. Subsequently, the stress distribution seems to be reevaluated and then a new distribution with new parameters needs to be suggested for the high strength concrete. For this purpose, linear and multiple regression analyses have been carried out in term of using experimental data for the high strength concrete of 40 to 80 MPa available in literatures. Accordingly, new parameters associated with the stress distribution have been proposed and employed for the design of flexural and compressive members. Comparative design examples indicate that designs with new parameters reduce section dimensions compared to those with the current code parameters for concrete strengths of 40 to 70 MPa. In particular, for compressive members, design with new parameters exhibit conservative compressive force compared to those with the current code parameters.

Flexural Characteristics of Reinforced Polymer Concrete T-Beams Strengthened with GFRP (GFRP 보강 철근 폴리머 콘크리트 T형 보의 휨 특성)

  • Jin, Nan-Ji;Hwang, Hae-Geun;Yeon, Jung-Heum
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.5
    • /
    • pp.585-596
    • /
    • 2012
  • In this study, the flexural characteristics of reinforced polymer concrete T-beams strengthened with GFRP, typically used for bridges and parking structures, are investigated. A method to determine the flexural failure mode of reinforced polymer concrete T-beams comprised of compression failure (CF), tension failure (TF), and fiber sheet failure (FF) for different levels of GFRP strengthening is proposed. Moreover, the present study provides a formula to calculate the design flexural strength for each failure mode. In reinforced polymer concrete T-beams strengthened with GFRP, an ideal failure mode can be achieved when the failure occurs in the following order: 1) yield of steel reinforcement, 2) failure of GFRP, and 3) compression failure of concrete. In the case of FF mode, due to GFRP failure before the polymer concrete crushing in compression region, a concept of equivalent rectangular block based on the ultimate limit state of concrete should not be used. Thus, this study suggests an idealized stress-strain curve for polymer concrete and finds parameters for stress block, ${\alpha}$ and ${\beta}$ based on the strain distribution in polymer concrete. Furthermore, the present study suggests an aspect ratio of 2.5 by examining the compressive stress distribution and design flexural strength characteristics for different aspect ratio of T-beams. This study also provides a design flexural strength formula, and validates its acceptability based on experiment and theoretical analysis.

Mechanical behaviour of steel fibre reinforced SCC after being exposed to fire

  • Ponikiewski, Tomasz;Katzer, Jacek;Kilijanek, Adrian;Kuzminska, Elzbieta
    • Advances in concrete construction
    • /
    • v.6 no.6
    • /
    • pp.631-643
    • /
    • 2018
  • The focus of this paper is given to the investigation of mechanical properties of steel fibre reinforced self-compacting concrete after being exposed to fire. The research programme covered tests of two sets of beams: specimens subjected to fire and specimens not subjected to fire. The fire test was conducted in an environment mirroring one of possible real fire situations where concrete surface for an extended period of time is directly exposed to flames. Micro-cracking of concrete surface after tests was digitally catalogued. Compressive strength was tested on cube specimens. Flexural strength and equivalent flexural strength were tested according to RILEM specifications. Damages of specimens caused by spalling were assessed on a volumetric basis. A comparison of results of both sets of specimens was performed. Significant differences of all tested properties between two sets of specimens were noted and analysed. It was proved that the limit of proportionality method should not be used for testing fire damaged beams. Flexural characteristics of steel fibre reinforced self-compacting concrete were significantly influenced by fire. The influence of fire on properties of steel fibre reinforced self-compacting concrete was discussed.

Effect of Volume Fraction and Length of Fiber on the Mechanical Properties of Fiber Reinforced Concrete (섬유보강 콘크리트의 역학적 특성에 대한 섬유 체적비와 길이의 영향)

  • Yang, Keun-Hyeok;O, Seung-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.1
    • /
    • pp.43-48
    • /
    • 2008
  • Fifteen concrete specimens were mixed and tested to explore the significance and limitation of appling the polyvinyl alcohol (PVA) fiber and steel fiber with end hook to concrete. Main parameters investigated were volume fraction and length of the fibers. The measured mechanical properties of fiber reinforced concrete are analyzed according to the equivalent fiber amount index explaining the adding amount and length of fibers. Test results showed that compressive strength of fiber reinforced concrete was higher than that of concrete with no fiber by $10{\sim}20%$. The normalized splitting tensile strength and flexural strength of PVA fiber reinforced concrete were similar to those of concrete with no fiber, whereas those of steel fiber reinforced concrete increased with the increase of the equivalent fiber amount index. In particular, much higher ductile behavior was observed in steel fiber reinforced concrete than in PVA reinforced concrete, indicating that the slope of descending branch of load-displacement relationship of steel fiber reinforced concrete decreased with the increase of the volume fraction and length of the fiber.