• Title/Summary/Keyword: equivalent dose

Search Result 534, Processing Time 0.033 seconds

Monte Carlo Simulation of the Carbon Beam Nozzle for the Biomedical Research Facility in RAON (한국형 중이온 가속기 RAON의 의생물 연구시설 탄소 빔 노즐에 대한 Monte Carlo 시뮬레이션)

  • Bae, Jae-Beom;Cho, Byung-Cheol;Kwak, Jung-Won;Park, Woo-Yoon;Lim, Young-Kyung;Chung, Hyun-Tai
    • Progress in Medical Physics
    • /
    • v.26 no.1
    • /
    • pp.12-17
    • /
    • 2015
  • The purpose of the Monte Carlo simulation study was to provide the optimized nozzle design to satisfy the beam conditions for biomedical researches in the Korean heavy-ion accelerator, RAON. The nozzle design was required to produce $C^{12}$ beam satisfying the three conditions; the maximum field size, the dose uniformity and the beam contamination. We employed the GEANT4 toolkit in Monte Carlo simulation to optimize the nozzle design. The beams for biomedical researches were required that the maximum field size should be more than $15{\times}15cm^2$, the dose uniformity was to be less than 3% and the level of beam contamination due to the scattered radiation from collimation systems was less than 5% of total dose. For the field size, we optimized the tilting angle of the circularly rotating beam controlled by a pair of dipole magnets at the most upstream of the user beam line unit and the thickness of the scatter plate located downstream of the dipole magnets. The values of beam scanning angle and the thickness of the scatter plate could be successfully optimized to be $0.5^{\circ}$ and 0.05 cm via this Monte Carlo simulation analysis. For the dose uniformity and the beam contamination, we introduced the new beam configuration technique by the combination of scanning and static beams. With the combination of a central static beam and a circularly rotating beam with the tilting angle of $0.5^{\circ}$ to beam axis, the dose uniformity could be established to be 1.1% in $15{\times}15cm^2$ sized maximum field. For the beam contamination, it was determined by the ratio of the absorbed doses delivered by $C^{12}$ ion and other particles. The level of the beam contamination could be achieved to be less than 2.5% of total dose in the region from 5 cm to 17 cm water equivalent depth in the combined beam configuration. Based on the results, we could establish the optimized nozzle design satisfying the beam conditions which were required for biomedical researches.

Quantitative Assessment of the Radiation Exposure during Pathologic Process in the Sentinel Iymph Node Biopsy using Radioactive Colloid (방사성 콜로이드를 이용한 감시림프절 생검 병리처리과정에서 방사선 피폭의 정량적 평가)

  • Song, Yoo-Sung;Lee, Jeong-Won;Lee, Ho-Young;Kim, Seok-Ki;Kang, Keon-Wook;Kook, Myeong-Cherl;Park, Weon-Seo;Lee, Geon-Kook;Hong, Eun-Kyung;Lee, Eun-Sook
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.4
    • /
    • pp.309-316
    • /
    • 2007
  • Purpose: Sentinel lymph node biopsy became the standard procedure in early breast cancer surgery. Faculty members might be exposed to a trace amount of radiation. The aim of this study is to quantify the radiation exposure and verify the safety of the procedure and the facilities, especially during pathologic process. Materials and Methods: Sentinel lymph node biopsies with Tc-99m human serum albumin were performed as routine clinical work. Exposed radiation doses were measured in pathologic technologist, nuclear medicine technologist, and nuclear medicine physician using a thermoluminescence dosimeter (TLD) during one month. We also measured the residual radioactivities or absorbed dose rates, the exposure distance and time during procedure, the radiation dose of the waste and the ambient equivalent dose of the pathology laboratory. Results: Actual exposed doses were 0.21 and 0.85 (uSv/study) for the whole body and hand of pathology technologist after 47 sentinel node pathologic preparations were performed. Whole body exposed doses of nuclear medicine physician and technologist were 0.2 and 2.3 (uSv/study). According to this data and the exposure threshold of the general population (1 mSv), at least 1100 studies were allowed in pathology technologist. The calculated exposed dose rates (${\mu}$ Sv/study) from residual radioactivities data were 2.47/ 22.4 ${\mu}$ Sv (whole body/hand) for the surgeon; 0.22/ 0 ${\mu}$ Sv for operation nurse. The ambient equivalent dose of the pathology laboratory was 0.02-0.03 mR/hr. The radiation dose of the waste was less than 100 Bq/g and nearly was not detected. Conclusion: Pathologic procedure relating sentinel lymph node biopsy using radioactive colloid is safe in terms of the radiation safety.(Nucl Med Mol Imaging 2007;41(4);309-316)

The Effect of External Radiation Therapy in Management of Malignant Obstructive Jaundice due to Porta Hepatis Metastasis from Stomach Cancer (위암의 간문맥 전이로 발생한 악성 폐쇄성 황달에 대한 외부 방사선치료 효과)

  • Yang, Kwang-Mo;Kim, Joon-Hee;Kim, Chul-Soo;Suh, Hyun-Suk;Kim, Re-Hwe
    • Radiation Oncology Journal
    • /
    • v.13 no.4
    • /
    • pp.339-348
    • /
    • 1995
  • Purpose : Since 1983, authors have conducted a study to evaluate the effect of external radiation therapy and to determine affected factors in management of the patients with malignant obstructive jaundice due to porta hepatis metastasis from stomach cancer. Materials and Methods : Thirty two patients with malignant obstructive jaundice due to porta hepatis metastasis from gastric cancer were presented. We have analysed 23 patients who were treated with external radiation therapy of more than 3000cGy. The radiation dose, disease extent at developement of jaundice, total bilirubin levels before radiation therapy, differentiation of histology, combind treatment, intent of primary surgery, initial stage of gastric cancer were analyzed to determine affected factors in radiation therapy. External radiation therapy was delivered with a daily dose of 180-300cGy, 5 times a week fractionation using 4 MeV linear accelerator. The radiation field included the porta hepatis with tumor mass by the abdominal ultrasonography or CT scan. In twenty three patients received more than 3000cGy, total irradiation dose was ranged from 3000cGy to 5480cGy, median 3770cGy. Among 23 patients, 13 patients were delivered more than equivalant dose of TDF 65(4140cGy/23fx). Results : Among 23 patients, complete, partial and no response were observed in 13, 5, 5 patients, respectively. The median survival for all patients was 5 momths. The significant prolongation of median survival was observed in complete responders(11 months) as compared to partial and no responders(5 months, 5 months respectively) Out of 13 patients with complete response, 6 patients lived more than a year Among 13 patients receiving more than 4140cGy equivalent dose, complete, partial and no response were observed in 10, 2 and 1 patients, respectively. The median survival for all these patients was 9.5 months. The median survival for complete responders(10/13) was 11.5 months. Among 10 patients receiving less than 4140cGy equivalent dose, complete, partial and no response were observed in 3, 3, 4 patients, respetively. The median survival for all these patients was 4.3 months Therefore, the radiation dose affected the results of treatment. For the complete response with prolongation of survival duration, at least 4140cGy equivalant dose should be delivered to porta hepatis. In evaluation of the disease extent, 7 patients of 13 complete responders showed localized disease in porta hepatis or peripancreatic area, but all patients with partial and no response showed wide extensive disease or persistant disease of primary gastric cancer. Therefore. the patients with the localized disease were the higher probability of complete response and long term survival. This study suggested that the radiation dose and the disease extent at developement of jaundice affected in radiation therapy for malignant obstructive jaundice. There were no serious complications related to external radiation therapy. Conclusion : External radiation therapy only could achieve the palliative effect in the patients with malignant obstructive jaundice due to porta hepatis metastasis from stomach cancer. This study suggested that the prolongation of survival duration could be achived in complete responders and radiation dose, extent of disease affected the results of treatment of malignant obstructive jaundice.

  • PDF

Shielding for Critical Organs and Radiation Exposure Dose Distribution in Patients with High Energy Radiotherapy (고 에너지 방사선치료에서 환자의 피폭선량 분포와 생식선의 차폐)

  • Chu, Sung-Sil;Suh, Chang-Ok;Kim, Gwi-Eon
    • Journal of Radiation Protection and Research
    • /
    • v.27 no.1
    • /
    • pp.1-10
    • /
    • 2002
  • High energy photon beams from medical linear accelerators produce large scattered radiation by various components of the treatment head, collimator and walls or objects in the treatment room including the patient. These scattered radiation do not provide therapeutic dose and are considered a hazard from the radiation safety perspective. Scattered dose of therapeutic high energy radiation beams are contributed significant unwanted dose to the patient. ICRP take the position that a dose of 500mGy may cause abortion at any stage of pregnancy and that radiation detriment to the fetus includes risk of mental retardation with a possible threshold in the dose response relationship around 100 mGy for the gestational period. The ICRP principle of as low as reasonably achievable (ALARA) was recommended for protection of occupation upon the linear no-threshold dose response hypothesis for cancer induction. We suggest this ALARA principle be applied to the fetus and testicle in therapeutic treatment. Radiation dose outside a photon treatment filed is mostly due to scattered photons. This scattered dose is a function of the distance from the beam edge, treatment geometry, primary photon energy, and depth in the patient. The need for effective shielding of the fetus and testicle is reinforced when young patients ate treated with external beam radiation therapy and then shielding designed to reduce the scattered photon dose to normal organs have to considered. Irradiation was performed in phantom using high energy photon beams produced by a Varian 2100C/D medical linear accelerator (Varian Oncology Systems, Palo Alto, CA) located at the Yonsei Cancer Center. The composite phantom used was comprised of a commercially available anthropomorphic Rando phantom (Phantom Laboratory Inc., Salem, YN) and a rectangular solid polystyrene phantom of dimensions $30cm{\times}30cm{\times}20cm$. the anthropomorphic Rando phantom represents an average man made from tissue equivalent materials that is transected into transverse 36 slices of 2.5cm thickness. Photon dose was measured using a Capintec PR-06C ionization chamber with Capintec 192 electrometer (Capintec Inc., Ramsey, NJ), TLD( VICTOREEN 5000. LiF) and film dosimetry V-Omat, Kodak). In case of fetus, the dosimeter was placed at a depth of loom in this phantom at 100cm source to axis distance and located centrally 15cm from the inferior edge of the $30cm{\times}30cm^2$ x-ray beam irradiating the Rando phantom chest wall. A acryl bridge of size $40cm{\times}40cm^2$ and a clear space of about 20 cm was fabricated and placed on top of the rectangular polystyrene phantom representing the abdomen of the patient. The leaf pot for testicle shielding was made as various shape, sizes, thickness and supporting stand. The scattered photon with and without shielding were measured at the representative position of the fetus and testicle. Measurement of radiation scattered dose outside fields and critical organs, like fetus position and testicle region, from chest or pelvic irradiation by large fie]d of high energy radiation beam was performed using an ionization chamber and film dosimetry. The scattered doses outside field were measured 5 - 10% of maximum doses in fields and exponentially decrease from field margins. The scattered photon dose received the fetus and testicle from thorax field irradiation was measured about 1 mGy/Gy of photon treatment dose. Shielding construction to reduce this scattered dose was investigated using lead sheet and blocks. Lead pot shield for testicle reduced the scatter dose under 10 mGy when photon beam of 60 Gy was irradiated in abdomen region. The scattered photon dose is reduced when the lead shield was used while the no significant reduction of scattered photon dose was observed and 2-3 mm lead sheets refuted the skin dose under 80% and almost electron contamination. The results indicate that it was possible to improve shielding to reduce scattered photon for fetus and testicle when a young patients were treated with a high energy photon beam.

High Energy Photon Dosimetry by ESR Spectroscopy in Radiotherapy (ESR Spectroscopy에 의한 치료용 고에너지 광자선의 선량측정)

  • Chu, Sung-Sil
    • Progress in Medical Physics
    • /
    • v.1 no.1
    • /
    • pp.31-42
    • /
    • 1990
  • The finding of long lived free radicals produced by ionizing radiation in organic crystals and the quantification of this effect by electron spin resonance(ESR) spactroscopy has proven excellent dosimetric applicability. The tissue equivalent alanine dosimeter also appear appropriate for radiation therapy level dosimetry. The dose measurement was performed in a Rando phantom using high energy photons as produced by high energy medical linear accelerator and cobalt-60 teletherapy unit. The absorbed dose range of the ESR/alanine dosimetry system could be extended down to 0.1 Gy. The response of the alanine dosimeters was determined for photons at different therapeutic dose levels from less than 0.1 Gy to 100 Gy and the depth dose measurements were carried out for photon energies of 1.25MeV, 6 and 10 MV with alanine dosimeters in Rando phantom. Comparisons between ESR/alanine in a Rando phantom and ion chamber in a water phantom were made performing depth dose measurements to examine the agreement of both methods under field conditions.

  • PDF

A New Approach for the Calculation of Neutron Dose Equivalent Conversion Coefficients for PMMA Slab Phantom (PMMA 평판형 팬텀에서의 중성자 선량당량 환산계수의 새로운 계산법)

  • Kim, Jong-Kyung;Kim, Jong-Oh
    • Journal of Radiation Protection and Research
    • /
    • v.21 no.4
    • /
    • pp.297-311
    • /
    • 1996
  • ANSI decided PMMA slab phantom as a calibration phantom and introduced a conversion coefficient calculation method for it. For photon, the conversion coefficient can be obtained by using backscatter factor and conversion coefficient of the ICRU tissue cube and backscatter factor of the PMMA slab. For neutron, however, the ANSI has not introduced any conversion coefficient calculation method for the PMMA slab. In this work, the ANSI method for the photon conversion coefficient calculation was applied to the neutron conversion coefficient calculation of the PMMA slab. Quality weighted tissue kerma of neutron was applied to calculate the backscatter factors on the ICRU cube and the PMMA slab. The dose conversion coefficient of the ICRU cube was also calculated by using MCNP code. Then, the dose conversion coefficient of the PMMA slab was calculated from two backscatter factors and the dose conversion coefficient of the ICRU cube. The discrepancies of the dose conversion coefficients of the PMMA slab and the ICRU cube were less than 10% except 1eV(20%), 1keV(17%), and 4 MeV(16%).

  • PDF

High Energy Electron Dosimetry by Alanine/ESR Spectroscopy (Alanine/ESR Spectroscopy에 의한 고에너지 전자선의 선량측정)

  • Chu, Sung-Sil
    • Radiation Oncology Journal
    • /
    • v.7 no.1
    • /
    • pp.85-92
    • /
    • 1989
  • Dosimerty based on electron spin resonance (ESR) analysis of radiation induced free radicals in amino acids is relevant to biological dosimetry applications. Alanine detectors are without walls and are tissue equivalent. Therefore, alanine ESR dosimetry looks promising for use in the therapy level. The dose range of the alanine/ESR dosimetry system can be extended down to 1 Gy. In water phantom the absorbed dose of electrons generated by a medical linear accelerator of different initial energies $(6\~21MeV)$ and therapeutic dose levels (1~60 Gy) was measured. Furthermore, depth dose measurements carried out with alanine dosimeters were compared with ionization chamber measurements. As the results, the measured absorbed doses for shallow depth of initial electron energies above 15 MeV were higher by$2\~5\%$ than those calculated by nominal energy $C_E$ factors. This seems to be caused by low energy scattered beams generated from the scattering foil and electron cones of beam projecting device in medical linear accelerator.

  • PDF

Patient-Specific Quality Assurance in a Multileaf Collimator-Based CyberKnife System Using the Planar Ion Chamber Array

  • Yoon, Jeongmin;Lee, Eungman;Park, Kwangwoo;Kim, Jin Sung;Kim, Yong Bae;Lee, Ho
    • Progress in Medical Physics
    • /
    • v.29 no.2
    • /
    • pp.59-65
    • /
    • 2018
  • This paper describes the clinical use of the dose verification of multileaf collimator (MLC)-based CyberKnife plans by combining the Octavius 1000SRS detector and water-equivalent RW3 slab phantom. The slab phantom consists of 14 plates, each with a thickness of 10 mm. One plate was modified to support tracking by inserting 14 custom-made fiducials on surface holes positioned at the outer region of $10{\times}10cm^2$. The fiducial-inserted plate was placed on the 1000SRS detector and three plates were additionally stacked up to build the reference depth. Below the detector, 10 plates were placed to avoid longer delivery times caused by proximity detection program alerts. The cross-calibration factor prior to phantom delivery was obtained by performing with 200 monitor units (MU) on the field size of $95{\times}92.5mm^2$. After irradiation, the measured dose distribution of the coronal plane was compared with the dose distribution calculated by the MultiPlan treatment planning system. The results were assessed by comparing the absolute dose at the center point of 1000SRS and the 3-D Gamma (${\gamma}$) index using 220 patient-specific quality assurance (QA). The discrepancy between measured and calculated doses at the center point of 1000SRS detector ranged from -3.9% to 8.2%. In the dosimetric comparison using 3-D ${\gamma}$-function (3%/3 mm criteria), the mean passing rates with ${\gamma}$-parameter ${\leq}1$ were $97.4%{\pm}2.4%$. The combination of the 1000SRS detector and RW3 slab phantom can be utilized for dosimetry validation of patient-specific QA in the CyberKnife MLC system, which made it possible to measure absolute dose distributions regardless of tracking mode.

Intravenous PCA for Pain Management in Terminal Cancer Patients during the Last Days of Life (정맥내 통증 자가조절법을 이용한 말기 암환자의 통증조절)

  • Song, Sun-Ok;Yeo, Jung-Eun;Kim, Heung-Dae;Park, Dae-Pal;Koo, Bon-Up;Lee, Byung-Yong;Hur, Nam-Seog;Lee, Kyung-Sook
    • The Korean Journal of Pain
    • /
    • v.9 no.1
    • /
    • pp.75-82
    • /
    • 1996
  • Background: Nerve blocks, including epidural analgesia, can be risky for terminal cancer pain patients in generally poor conditions. We performed this study to evaluate the efficacy of intravenous patient-controlled analgesia(PCA) to treat severe pain of terminally ill cancer patients during the last days of life. Methods: We explained the patient's poor general condition to relatives and received a written consent to administer PCA. The starting dose of opioid for PCA in cancer pain management was based on previous 24-hour dose. Previous 24-hour opioid dose was converted to intramuscular morphine equivalent. The concentration of opioid mixed into Basal Bolus $Infusor^{(R)}$ was controlled to allow for one half of the previous 24-hour equianalgesic dose to infuse continuously. Patients controlled their pain by pushing the PCA module themselves. Patients were observed by pain service team. Some discharged patients were treated at home until death. Results: Forty eight patients received PCA for last two years. The most common reason receiving a PCA was the patient's poor general condition(52.0%). The mean starting dose of PCA was $20.6{\pm}16.2$ mg of morphine. Over eighty percents of the patients were in good or tolerable state of analgesia. Half of the patients expired within one week. The mean duration of PCA was $8.7{\pm}7.0$ days. The problems during PCA were: difficulty in maintaining intravenous routes, early loss of mentality after starting PCA, hypotension and nausea. Conclusion: We concluded that PCA, if correctly, is an effective, relatively safe and readily controllable method of pain management in terminally ill cancer patients during the last days of life. For future considerations, terminal patients may expire at the comfort of their own homes after the resolution of legal problems regarding using opioid in home care.

  • PDF

Dosimetric Characteristics of Dynamic Wedge Technique (Dynamic Wedge의 조직내 방사선량 분포의 특성)

  • Oh Young Taek;Keum Ki Chang;Chu Seong Sil;Kim Gwi Eon
    • Radiation Oncology Journal
    • /
    • v.14 no.4
    • /
    • pp.323-332
    • /
    • 1996
  • Purpose : The wedge filter is the most commonly used beam modifying device during radiation therapy Recently dynamic wedge technique is available through the computer controlled asymmetric collimator, independent jaw. But dosimetric characteristics of dynamic wedge technique is not well known. Therefore we evaluate dosimetric characteristics of dynamic wedge compared to conventional fixed wedge. Materials and Methods : We evaluated dosimetric characteristics of dynamic wedge and fixed wedge by ion chamber, film dosimetry and TLD in phantoms such as water, polystyrene and average breast phantom. Six MV x-ray was used in $15{\times}15cm$ field with 15,30 and 45 degree wedge of dynamic/liked wedge system, Dosimeric characteristics are interpreted by Wellhofer Dosimetrie system WP700/WP700i and contralateral breast dose (CBD) with tangential technique was confirmed by TLD. Results : 1) Percent depth dose through the dynamic wedge technique in tissue equivalent phantom was similar to open field irradiation and there was no beam hardening effect compared to fixed wedge technique. 2) Isodose line composing wedge angle of dynamic wedge is more straight than hard wedge. And dynamic wedge technique was able to make any wedge angle on any depth and field size. 3) The contralateral breast dose in primary breast irradiation was reduced by dynamic wedge technique compared to fixed wedge. When the dynamic wedge technique was applied, the scatter dose was similar to that of open field irradiation. Conclusion : The dynamic wedge technique was superior to fixed wedge technique in dosimetric characteristics and may be more useful in the future.

  • PDF