• 제목/요약/키워드: equilibrium point

검색결과 561건 처리시간 0.027초

하이브리드 방식을 이용한 크레인의 앤티스웨이 제어 (Anti-sway Control of Crane System Using Hybrid Control Method)

  • 박흥수;김환성;박준형;이동훈;김상봉
    • 동력기계공학회지
    • /
    • 제2권1호
    • /
    • pp.67-72
    • /
    • 1998
  • In crane control system, it is required that the travelling time of crane must be reduced as much as possible and there is no the swing of load at the end and starting points. In this paper, we present a hybrid control method which includes two control methods of the optimal regulator and the velocity pattern control in order to realize high performance of the anti-sway. To implement the control algorithm, the dynamic equation is linearlized at an equilibrium point, so that the linear time invariant state equation can be obtained. A 1/10 sized model crane of the usual gantry cranes is made and used to show the applicability of the developed hybrid control method. The effectiveness of developed hybrid control method is proved by experimental results which show us good performance for anti-sway control comparing to conventional velocity pattern control. Practically, it is expected that the proposed control system will make an important contribution to the automatic crane control system of the industrial fields.

  • PDF

폐타이어를 흡착제로 한 카드뮴 함유 폐수 처리 특성 (Adsorption Treatment Characteristics of Cadmium Ion Containing Wastewater Using Waste Tire as an Adsorbent)

  • 백미화;김동수
    • 한국물환경학회지
    • /
    • 제22권3호
    • /
    • pp.498-503
    • /
    • 2006
  • Adsorption features of $Cd^{2+}$ on waste tire particles have been investigated for the purpose of enhanced wastes recycling along with the development of an economic process for wastewater treatment. The isoelectric point of waste tire particles was found to be ca. pH 7 and the adsorbed amount of $Cd^{2+}$ was increased with pH under experimental conditions. The variation of the adsorption behavior of $Cd^{2+}$ with pH was well explained by the change of the electrokinetic potential of waste tire particles according to the pH. Adsorption of $Cd^{2+}$ was observed to reach its equilibrium within 45 minutes after the adsorption started under experimental conditions and followed the Freundlich model well. Kinetic analysis showed that the adsorption reaction of $Cd^{2+}$ was second order and thermodynamic estimation substantiated the endothermic behavior of $Cd^{2+}$ adsorption. As the amount of adsorbent increased, more adsorption of $Cd^{2+}$ was accomplished and the adsorption capacity of adsorbent was found to be enhanced by its pre-treatment with NaOH. Also, the adsorption of adsorbate was promoted as the ionic strength of wastewater was increased.

경사면을 주행하는 차륜형 역진자를 위한 속도 추정기 기반 제어기 설계 (A Controller Based on Velocity Estimator for a Wheeled Inverted Pendulum Running on the Inclined Road)

  • 이세한;이상용
    • 한국지능시스템학회논문지
    • /
    • 제21권3호
    • /
    • pp.283-289
    • /
    • 2011
  • 본 논문에서는 차륜형 역진자에 적용되는 속도 추정기 기반 제어기 설계와 다양한 수치 시뮬레이션이 수행되었다. 차륜형 역진자는 불안정한 평형점과 안정한 평형점을 동시에 갖는다. 불안정한 평형점에 대하여 평형을 유지하기 위하여 차륜형 역진자는 지속적으로 제어되어야 한다. 제어기의 입력으로 차륜형 역진자 몸체의 각도, 각속도, 변위 속도 등이 필요하다. 필요한 속도는 모터에 부착된 에코더 신호를 차분하여 얻어지며, 엔코더의 해상도에 민감하게 의존한다. 저해상도 엔코더와 속도 추정기에 기반하여 개선된 속도 검출법이 제안되고 경사면에서 유효함을 보이기 위해서 다양한 수치 시뮬레이션이 수행되었다.

Passivity-Based Control System of Permanent Magnet Synchronous Motors Based on Quasi-Z Source Matrix Converter

  • Cheng, Qiming;Wei, Lin
    • Journal of Power Electronics
    • /
    • 제19권6호
    • /
    • pp.1527-1535
    • /
    • 2019
  • Because of the shortcomings of the PID controllers and traditional drive systems of permanent magnet synchronous motors (PMSMs), a PMSM passivity-based control (PBC) drive system based on a quasi-Z source matrix converter (QZMC) is proposed in this paper. The traditional matrix converter is a buck converter with a maximum voltage transmission ratio of only 0.866, which limits the performance of the driven motor. Therefore, in this paper a quasi-Z source circuit is added to the input side of the two-stage matrix converter (TSMC) and its working principle has also been verified. In addition, the controller of the speed loop and current loop in the conventional vector control of a PMSM is a PID controller. The PID controller has the problem since its parameters are difficult to adjust and its anti-interference capability is limited. As a result, a port controlled dissipative Hamiltonian model (PCHD) of a PMSM is established. Thereafter a passivity-based controller based on the interconnection and damping assignment (IDA) of a QZMC-PMSM is designed, and the stability of the equilibrium point is theoretically verified. Simulation and experimental results show that the designed PBC control system of a PMSM based on a QZMC can make the PMSM run stably at the rated speed. In addition, the system has strong robustness, as well as good dynamic and static performances.

Envisaging Macroeconomics Antecedent Effect on Stock Market Return in India

  • Sivarethinamohan, R;ASAAD, Zeravan Abdulmuhsen;MARANE, Bayar Mohamed Rasheed;Sujatha, S
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제8권8호
    • /
    • pp.311-324
    • /
    • 2021
  • Investors have increasingly become interested in macroeconomic antecedents in order to better understand the investment environment and estimate the scope of profitable investment in equity markets. This study endeavors to examine the interdependency between the macroeconomic antecedents (international oil price (COP), Domestic gold price (GP), Rupee-dollar exchange rates (ER), Real interest rates (RIR), consumer price indices (CPI)), and the BSE Sensex and Nifty 50 index return. The data is converted into a natural logarithm for keeping it normal as well as for reducing the problem of heteroscedasticity. Monthly time series data from January 1992 to July 2019 is extracted from the Reserve Bank of India database with the application of financial Econometrics. Breusch-Godfrey serial correlation LM test for removal of autocorrelation, Breusch-Pagan-Godfrey test for removal of heteroscedasticity, Cointegration test and VECM test for testing cointegration between macroeconomic factors and market returns,] are employed to fit regression model. The Indian market returns are stable and positive but show intense volatility. When the series is stationary after the first difference, heteroskedasticity and serial correlation are not present. Different forecast accuracy measures point out macroeconomics can forecast future market returns of the Indian stock market. The step-by-step econometric tests show the long-run affiliation among macroeconomic antecedents.

명목임금의 경직성과 고용변동성 (Nominal Wage Rigidity and Employment Volatility)

  • 황상현;이진영
    • 아태비즈니스연구
    • /
    • 제10권4호
    • /
    • pp.137-151
    • /
    • 2019
  • Using Korean Labor and Income Panel Study data, this paper estimates nominal wage rigidity in Korea by industry from 2005 to 2017 and evaluates the level of inefficiency of Korean labor market. And, after estimating employment volatility by industry using the Labor Force Survey at Establishments data for Korea, we combine the nominal wage rigidity and the employment volatility estimates and analyze the effect of nominal wage rigidity on employment volatility in Korea from 2011 to 2017. If the level of wage rigidity is high, it may be hard for the labor market to be in the equilibrium, and therefore, the market may have inefficiency. We find that the inefficiency of the labor market in Korea have increased from 2005 to 2017 and the industry of accommodation and food service activities has the highest level of inefficiency over the period. We also find that one-percent-point increase in wage rigidity increases employment volatility by 2.3-2.9 percent and the positive effect is bigger for workers with part-time and temporary jobs. The result implies that firms may adjust their labor costs by changing the number of casual workers, rather than permanent workers, when the labor market suffers from a high level of wage rigidity.

Quasi-static responses of time-dependent sandwich plates with viscoelastic honeycomb cores

  • Nasrin Jafari;Mojtaba Azhari
    • Structural Engineering and Mechanics
    • /
    • 제88권6호
    • /
    • pp.589-598
    • /
    • 2023
  • This article addresses the quasi-static analysis of time-dependent honeycomb sandwich plates with various geometrical properties based on the bending analysis of elastic honeycomb sandwich plates employing a time function with three unknown coefficients. The novel point of the developed method is that the responses of viscoelastic honeycomb sandwich plates under static transversal loads are clearly formulated in the space and time domains with very low computational costs. The mechanical properties of the sandwich plates are supposed to be elastic for the faces and viscoelastic honeycomb cells for the core. The Boltzmann superposition integral with the constant bulk modulus is used for modeling the viscoelastic material. The shear effect is expressed using the first-order shear deformation theory. The displacement field is predicted by the product of a determinate geometrical function and an indeterminate time function. The simple HP cloud mesh-free method is utilized for discretizing the equations in the space domain. Two coefficients of the time function are extracted by answering the equilibrium equation at two asymptotic times. And the last coefficient is easily determined by solving the first-order linear equation. Numerical results are presented to consider the effects of geometrical properties on the displacement history of viscoelastic honeycomb sandwich plates.

Buckling and forced oscillation of organic nanoplates taking the structural drag coefficient into account

  • Dao Minh Tien;Do Van Thom;Nguyen Thi Hai Van;Abdelouahed Tounsi;Phung Van Minh;Dao Nhu Mai
    • Computers and Concrete
    • /
    • 제32권6호
    • /
    • pp.553-565
    • /
    • 2023
  • This work is the first to apply nonlocal theory and a variety of deformation plate theories to study the issue of forced vibration and buckling in organic nanoplates, where the effect of the drag parameter inside the structure has been taken into consideration. Whereas previous research on nanostructures has treated the nonlocal parameter as a fixed value, this study accounts for its effect, and finds that its value fluctuates with the thickness of each layer. This is also a new point that no works have mentioned for organic plates. On the foundation of the notion of potential movement, the equilibrium equation is derived, the buckling issue is handled using Navier's solution, and the forced oscillation problem is solved using the finite element approach. Additionally, a set of numerical examples exhibiting the forced vibration and buckling response of organic nanoplates are shown. These findings indicate that the nonlocal parameter and the drag parameter of the structure have a substantial effect on the mechanical responses of organic nanoplates.

A novel method for solving structural problems: Elastoplastic analysis of a pressurized thick heterogeneous sphere

  • Abbas Heydari
    • Advances in Computational Design
    • /
    • 제9권1호
    • /
    • pp.39-52
    • /
    • 2024
  • If the governing differential equation arising from engineering problems is treated as an analytic, continuous and derivable function, it can be expanded by one point as a series of finite numbers. For the function to be zero for each value of its domain, the coefficients of each term of the same power must be zero. This results in a recursive relationship which, after applying the natural conditions or the boundary conditions, makes it possible to obtain the values of the derivatives of the function with acceptable accuracy. The elastoplastic analysis of an inhomogeneous thick sphere of metallic materials with linear variation of the modulus of elasticity, yield stress and Poisson's ratio as a function of radius subjected to internal pressure is presented. The Beltrami-Michell equation is established by combining equilibrium, compatibility and constitutive equations. Assuming axisymmetric conditions, the spherical coordinate parameters can be used as principal stress axes. Since there is no analytical solution, the natural boundary conditions are applied and the governing equations are solved using a proposed new method. The maximum effective stress of the von Mises yield criterion occurs at the inner surface; therefore, the negative sign of the linear yield stress gradation parameter should be considered to calculate the optimal yield pressure. The numerical examples are performed and the plots of the numerical results are presented. The validation of the numerical results is observed by modeling the elastoplastic heterogeneous thick sphere as a pressurized multilayer composite reservoir in Abaqus software. The subroutine USDFLD was additionally written to model the continuous gradation of the material.

Pseudo-static solution of active earth pressure against relief shelf retaining wall rotating around heel

  • Yun Que;Jisong Zhang;Chengcheng Long;Fuquan Chen
    • Geomechanics and Engineering
    • /
    • 제39권1호
    • /
    • pp.87-104
    • /
    • 2024
  • In practical engineering, the design process for most retaining walls necessitates careful consideration of seismic resistance. The prevention of retaining wall overturning is of paramount importance, especially in cases where the foundation's bearing capacity is limited. To research the seismic active earth pressure (ES) of a relieving retaining wall rotating around base (RB), the shear dissipation graphs across various operating conditions are analyzed by using Optum software, and the earth pressure in each region was derived by the inclined strip method combined with the limit equilibrium method. By observing shear dissipation graphs across various operating conditions, the distribution law of each sliding surface is summarized, and three typical failure modes are obtained. The corresponding calculation model was established. Then the resultant force and its action point were obtained. By comparing the theoretical and numerical solutions with the previous studies, the correctness of the derived formula is proved. The variation of earth pressure distribution and resultant force under seismic acceleration are studied. The unloading plate's position, the wall heel's length, and seismic acceleration will weaken the unloading effect. On the contrary, the length of the unloading plate and the friction angle of the filling will strengthen the unloading effect. The derived formula proposed in this study demonstrates a remarkable level of accuracy under both static and seismic loading conditions. Additionally, it serves as a valuable design reference for the prevention of overturning in relieving retaining walls.