• Title/Summary/Keyword: equilibrium isotherm

Search Result 366, Processing Time 0.021 seconds

Adsorption Equilibrium, Kinetics and Thermodynamics Studies of Malachite Green Using Zeolite (제올라이트를 이용한 말라카이트 그린의 흡착평형, 동력학 및 열역학 연구)

  • Lee, Jong-Jib
    • Clean Technology
    • /
    • v.18 no.1
    • /
    • pp.76-82
    • /
    • 2012
  • The paper includes utlization of zeolite as potential adsorbent to remove a hazardous malachite green from waste water. The adsorption studies were carried out at 298, 308 and 318 K and effects of temperature, contact time, initial concentration on the adsorption were measured. On the basis of adsorption data Langmuir and Freundlich adsorption isotherm model were also confirmed. The equilibrium process was described well by Freundlich isotherm model, showing a selective adsorption by irregular energy of zeolite surface. From determined isotherm constants, zeolite could be employed as effective treatment for removal of malachite green. From kinetic experiments, the adsorption process followed the pseudo second order model, and the adsorption rate constant ($k_2$) decreased with increasing initial concentration of malachite green. Thermodynamic parameters like activation energy, change of free energy, enthalpy, and entropy were also calculated to predict the nature adsorption. The activation energy calculated from Arrhenius equation indicated that the adsorption of malachite green on the zeolite was physical process. The negative free energy change (${\Delta}G^{\circ}$ =-6.47~-9.07 kJ/mol) and the positive enthalpy change (${\Delta}H^{\circ}$ = +32.414 kJ/mol) indicated the spontaneous and endothermic nature of the adsorption in the temperature range 298~318 K.

Assessment of the Sorption Characteristics of Cadmium onto Steel-making Slag in Simulated Sea Water Using Batch Experiment (모사해수 조건에서 회분식 실험을 이용한 제강슬래그의 카드뮴 흡착 특성 평가)

  • Kim, Eun-Hyup;Rhee, Sung-Su;Lee, Gwang-Hun;Kim, Yong-Woo;Park, Jun-Boum;Oh, Myoung-Hak
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.4
    • /
    • pp.43-50
    • /
    • 2011
  • Steel-making slag was investigated as reactive material for removal of cadmium in coastal area. Batch experiments of the sorption isotherm experiment and kinetic sorption experiment were performed. Result of sorption isotherm was more adequately described by Langmuir model than Freundlich model and theoretical maximum capacity (${\beta}$) of cadmium onto steel-making slag was found. Results of kinetic sorption experiments were evaluated by pseudo second order model to investigate sorption characteristics of cadmium onto steel-making slag. Results showed that the equilibrium sorption amount of cadmium (q$q_e$) increased and the rate constant ($k_2$) and initial sorption rate (h) decreased as the initial cadmium concentration increased. The $q_e$ with simulated sea water was similar to that with deionized water and $k_2$ and h with simulated sea water was lower than those with deionized water. Results of kinetic experiments could be used to predict the result from sorption isotherm, since equilibrium sorption amounts calculated by pseudo second order model generally agreed with those measured from sorption isotherm. The reaction time for the target removal rate could be calculated by the pseudo second order model using kinetic sorption tests results.

Adsorption Equilibrium, Kinetics and Thermodynamic Parameters Studies of Bismarck Brown R Dye Adsorption on Granular Activated Carbon (입상 활성탄에 대한 비스마르크 브라운 R 염료의 흡착평형, 동력학 및 열역학 파라미터에 관한 연구)

  • Lee, Jong-Jib
    • Applied Chemistry for Engineering
    • /
    • v.24 no.3
    • /
    • pp.327-332
    • /
    • 2013
  • Batch experiments were carried out for adsorption equilibrium, kinetics and thermodynamic parameters of the brilliant brown R onto granular activated carbon. The operating variables studied were the initial dye concentration, contact time and temperature. Experimental equilibrium adsorption data were fitted to Langmuir and Freundlich adsorption isotherm by linear regression method. The equilibrium process was well described by Freundlich isotherm model and from the determined separation factor (1/n), granular activated carbon could be employed as an effective treatment for the removal of bismarck brown R. From kinetic experiments, the adsorption processes were found to confirm the pseudo second order model with a good correlation and the adsorption rate constant ($k_2$) increased with increasing adsorption temperature. Thermodynamic parameters like the activation energy, change of Gibbs free energy, enthalpy, and entropy were also calculated to predict the nature of adsorption in the temperature range of 298~318 K. The activation energy was determined as 8.73 kJ/mol for 100 mg/L. It was found that the adsorption of bismarck brown R on the granular activated carbon was physical process. The negative Gibbs free energy change (${\Delta}G$ = -2.59~-4.92 kJ/mol) and the positive enthalpy change (${\Delta}H$ = +26.34 kJ/mol) are indicative of the spontaneous and endothermic nature of the adsorption process.

A Study on Adsorption of Lead(II) in Wastewater Using Natural Kaolinite (천연 고령토의 폐수 중 납 흡착에 관한 연구)

  • 이종은
    • Journal of Environmental Health Sciences
    • /
    • v.21 no.3
    • /
    • pp.77-86
    • /
    • 1995
  • Lead(II) removal efficiency by natural kaolinite was investigated through laboratory experiments. This study was conducted in two phases-sorption and desorption. In the adsorption study, the influence of sorption kinetics and sorption isotherm and various parameters such as pH, temperature, coexisting other heavy metal ions on the lead adsorption was investigated. And desorption study was carried out in order to find the re-usability of kaolinite as an adsorbent. The results of the study are as follows. 1. Sorption kinetics was investigated under the condition of 2.5 mg/l adsorbent concentration, pH 6.5$\pm$0.05, temperature $30\pm 0.5\circ$C, initial lead(II) concentration 25 mg/l. Adsorption rate was initially rapid and the extent of adsorption arrived at adsorption equilibrium with 73% adsorption efficiency in an hour. 2. The sorption isotherm experiment was made with different initial lead(II) concentration. A linearized Freundlich equation was used to fit the acquired experimental data. As a result, Freundlich constants, the sorption intensity (1/n) was 0.47 and the measure of sorption (k) was 2.44. So, it was concluded that sorption of lead(II) by kaolinite is effective. 3. The effect of pH on lead(II) sorption by kaolinite shows that at a pH of 3, only 6% of the total lead(II) was adsorbed and at a pH 9, 97% of the lead(II) was removed. And the effect of temperature on lead(II) sorption by kaolinite shows that as the temperature increased, the amount of lead(II) sorption per unit weight of kaolinite increased. But the effect was minor (p<0.05). 4. Sorption isotherm of lead coexisting cadmium (II) or zinc (II) was lower than that of lead itself. It was caused by the result of competitive sorption to adsorption site. And there was no difference between the sorption isotherm of cadmium and zinc. 5. In desorption studies, only 5.12% desorption took place in distilled water, while 52.08% in 0.1 N hydrochloric acid. Consequently used kaolinite could be regenerated by hydrochoric acid.

  • PDF

Effectiveness of Feather Waste for Orange II Removal from Aqueous Solutions (수용액 중 Orange II 흡착 제거를 위한 우모폐기물의 이용가능성)

  • Park, Soo-Yeun;Yoo, Ji-Yeon;Son, Hong-Joo
    • Journal of Environmental Science International
    • /
    • v.27 no.9
    • /
    • pp.743-751
    • /
    • 2018
  • The objective of this study was to investigate the adsorption potential of chicken feathers for the removal of OrangeII (AO7) from aqueous solutions. Batch experiments were performed as a function of different experimental parameters such as initial pH, reaction time, feather dose, initial OrangeII concentration and temperature. The highest OrangeII uptake was observed at pH 1.0. Most of the OrangeII was adsorbed at 2 h and an adsorption equilibrium was reached at 6 h. As the amount of chicken feather was increased, the removal efficiency of OrangeII increased up to 99%, but its uptake decreased. By increasing the initial concentration and temperature, OrangeII uptake was increased. The experimental adsorption isotherm exhibited a better fit with the Langmuir isotherm than with the Freundlich isotherm, and maximum adsorption capacity from the Langmuir constant was determined to be 0.179244 mmol/g at $30^{\circ}C$. The adsorption energy obtained from the Dubinin-Radushkevich model was 7.9 kJ/mol at $20^{\circ}C$ and $30^{\circ}C$ which indicates the predominance of physical adsorption. Thermodynamic parameters such as ${\Delta}G^0$, ${\Delta}H^0$, and ${\Delta}S^0$ were -12.28 kJ/mol, 20.64 kJ/mol and 112.32 J/mol K at $30^{\circ}C$, respectively. This indicates that the process of OrangeII adsorption by chicken feathers was spontaneous and endothermic. Our results suggest that as a low-cost biomaterials, chicken feather is an attractive candidate for OrangeII removal from aqueous solutions.

Adsorption Properties of Cadmium onto Granite Soil and Calcium Sand (화강풍화토 및 칼슘샌드에 의한 카드뮴 흡착특성 연구)

  • Lee, Myoung-Eun;Kwon, Min-Seok;Ahn, Yong-Tae;Chung, Jae-Woo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.22 no.2
    • /
    • pp.27-34
    • /
    • 2014
  • Kinetic and isotherm properties of the cadmium adsorption onto calcium sand and granite soil were evaluated by batch experiments. The pHs of calcium sand and granite soil were 9.51 and 6.33, respectively, showing that the precipitation of heavy metals can be occurred due to the increase of pH when the calcium sand is used as an adsorbent. The pseudo-second-order model described the adsorption kinetics satisfactory with correlation coefficients over 0.999. The equilibrium adsorption capacities of calcium sand and granite soil were 2.10 and 2.16 mg/g, respectively. The adsorption isotherm followed the Freundlich isotherm model, indicating the cadmium adsorbed onto the heterogeneous surfaces of adsorbents.

Nonlinear Adsorption Isotherm of Single and Multi-Components of 2'-Deoxyribonucleosides (2'-deoxyribonucleosides의 단일 및 다성분계의 비선형 흡착평형식)

  • Jin, Long Mei;Han, Soon Koo;Choi, Dae-Ki;Row, Kyung Ho
    • Korean Chemical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.230-235
    • /
    • 2005
  • Reversed-phase high-performance liquid chromatography (RP-HPLC) was used to determine the equilibrium isotherm of single and multi-components of dUrd(2'-deoxyuridine), dGuo(2'-deoxyguanosine), and dAdo(2'-deoxyadenosine) of 2'-deoxyribonucleosides by dynamic method. The composition of mobile phase was 90/10 vol.% (water/MeOH). With an increase in the injection volumes, the retention times were shorter and the peak shapes were triangle-shaped, so Langmuir-type isotherm was assumed. The Langmuir adsorption parameters were estimated by PIM (pulsed-input method), and the competitive Langmuir adsorption isotherm was further utilized. For the sample of the dUrd and dGuo whose retention times were relatively short, the agreement of between the calculated value and experimental data was fairly good in both single and multi-components, but for the dAdo, the last eluting component, some deviations were caused by non-linear and non-ideal properties.

Adsorption of Nalidixic Acid to Human Erythrocytes and Plasma (Nalidixic Acid의 혈구(血球) 및 혈장(血漿)에 대(對)한 흡착(吸着))

  • Kim, Shin-Keun
    • Journal of Pharmaceutical Investigation
    • /
    • v.4 no.1_2
    • /
    • pp.25-30
    • /
    • 1974
  • The adsorption of nalidixic acid on human erythrocytes was found to expressed by Freundlich's isotherm. The amount of adsorption of nalidixic acid on erythrocytes increased with an increase of pH. The adsorption of nalidixic acid on human plasma was found to expressed at Scatchard's equation by the equilibrium dialysis method. An influence of pH on adsorption of nalidixic acid to human plasma proteins was studies at pH 4-10. It was found that the degree of adsorption increase with the increase of pH from 4-6, but descreased above pH 9.

  • PDF

Cu and Zn Ions Adsorption Properties at Various pH with a Synthetic Zeolite (합성 제올라이트를 이용한 pH에 따른 Cu와 Zn 이온의 흡착특성)

  • Lee, Chang-Han
    • Journal of Environmental Science International
    • /
    • v.21 no.7
    • /
    • pp.805-813
    • /
    • 2012
  • The removal property of Cu and Zn ions by chemical precipitation and adsorption using zeolite(Z-C1) prepared from coal fly ash(CFA) were evaluated in this study. Adsorption kinetic and equilibrium mechanisms described to analyze parameters and correlation factors with Lagergen $1^{st}$ and $2^{nd}$ order model and Langmuir and Freundlich model. Analysis of adsorption kinetics data revealed that the pseudo $2^{nd}$ order kinetics mechanism was predominant. The equilibrium data in pH 3 - 5 were able to be fitted well to a Langmuir model, by which the maximum adsorption capacities($q_{max}$) were determined at 124.9 - 140.1 mg $Cu^{2+}/g$ and 153.2 - 166.9 mg $Zn^{2+}/g$, respectively. We found that Z-C1 has a potential application as absorbents in metal ion recovery with low pH.

Equilibrium Moisture Contents of Major Korean Coniferous Species (주요 국산 침엽수종의 평형함수율)

  • Lee, Won-Hee;Park, Byung-Soo;Byeon, Hee-Seop;Kang, Ho-Yang;Chong, Sung-Ho
    • Journal of the Korea Furniture Society
    • /
    • v.19 no.1
    • /
    • pp.75-82
    • /
    • 2008
  • A series of the studies on the applied physical properties of main domestic species have been conducted last three years. Equilibrium moisture content(EMC) of Pinus koraiensis, Larix kaemferi, Pinus koraiensis were investigated. The experiments for sorption property were conducted with 20- and 80-mesh wood powder and resulted in their EMC's at various sorption conditions. Amount of moisture sorption and sorption speed of Larix kaemferi were shown the most large values and very fast among three Korean main coniferous wood.

  • PDF