DOI QR코드

DOI QR Code

Adsorption Properties of Cadmium onto Granite Soil and Calcium Sand

화강풍화토 및 칼슘샌드에 의한 카드뮴 흡착특성 연구

  • Lee, Myoung-Eun (Department of Environmental Engineering, Green Technology Institute(GTI), Gyeongnam National University of Science and Technology(GNTECH)) ;
  • Kwon, Min-Seok (Department of Civil Engineering, Kyunghee University) ;
  • Ahn, Yong-Tae (Department of Energy Engineering, GNTECH) ;
  • Chung, Jae-Woo (Department of Environmental Engineering, Green Technology Institute(GTI), Gyeongnam National University of Science and Technology(GNTECH))
  • 이명은 (경남과학기술대학교 환경공학과, 녹색기술연구소) ;
  • 권민석 (경희대학교 사회기반시스템공학과) ;
  • 안용태 (경남과학기술대학교 에너지공학과) ;
  • 정재우 (경남과학기술대학교 환경공학과, 녹색기술연구소)
  • Received : 2014.06.08
  • Accepted : 2014.06.24
  • Published : 2014.06.30

Abstract

Kinetic and isotherm properties of the cadmium adsorption onto calcium sand and granite soil were evaluated by batch experiments. The pHs of calcium sand and granite soil were 9.51 and 6.33, respectively, showing that the precipitation of heavy metals can be occurred due to the increase of pH when the calcium sand is used as an adsorbent. The pseudo-second-order model described the adsorption kinetics satisfactory with correlation coefficients over 0.999. The equilibrium adsorption capacities of calcium sand and granite soil were 2.10 and 2.16 mg/g, respectively. The adsorption isotherm followed the Freundlich isotherm model, indicating the cadmium adsorbed onto the heterogeneous surfaces of adsorbents.

자연에서 쉽게 구할 수 있는 저비용 재료인 칼슘샌드와 화강풍화토에 의한 카드뮴 흡착의 동력학적 특성과 등온흡착 특성에 관한 회분식 실험을 수행하였다. 칼슘샌드와 화강풍화토의 pH는 각각 9.51과 6.33으로 나타났으며 칼슘샌드에 의한 중금속 흡착시에는 pH 증가에 따른 침전효과가 있을 것으로 나타났다. 아세테이트 완충용액을 사용하여 pH가 5.0~5.3으로 일정하게 유지되는 조건에서 카드뮴 초기농도가 20 mg/L일 때, 칼슘샌드와 화강풍화토에 의한 카드뮴 흡착의 동력학적 거동은 유사 이차반응을 따르는 것으로 나타났다. 유사 이차 반응속도 모델을 적용할 때 칼슘샌드와 화강풍화토의 카드뮴 흡착의 결정계수는 0.999이며 평형흡착량($q_e$)은 각각 2.10와 2.16 mg/g으로 나타났다. 카드뮴의 등온흡착 특성은 Freundlich 모델에 의해 적절하게 설명될 수 있는 것으로 나타나 흡착소재의 카드뮴 흡착은 비균일한 표면에서 이루어지는 다층 흡착인 것으로 나타났다.

Keywords

References

  1. Greener, Y. and Kochen, J. A., "Methylmercury Toxicity in the Chick Embryo", Teratology, 28(1), pp. 23-28. (1983). https://doi.org/10.1002/tera.1420280105
  2. Strubelt, O., Kremer, J., Tilse, A., Keogh, J., Pentz, R. and Younes, M., "Comparative Studies on the Toxicity of Mercury, Cadmium, and Copper Toward the Isolated Perfused Rat Liver", J. Toxicol. Environ. Health, 47(3), pp. 267-283. (1996). https://doi.org/10.1080/009841096161780
  3. Ok, Y. S., Yang, J. E., Zhang, Y. S., Kim, S. J. and Chung, D. Y., "Heavy Metal Adsorption by a Formulated Zeolite-Portland Cement Mixture", J. Hazard. Mater., 147(1-2), pp. 91-96. (2007). https://doi.org/10.1016/j.jhazmat.2006.12.046
  4. Seo, Y. C., Lee, H. J. and Kim, D. W., "Characteristics of Heavy Metals Biosorption by Penicillium Biomass", J. of KSEA, 9(1), pp. 49-54. (2006).
  5. Chen, J. P., Yoon, J. T. and Yiacoumi, S., "Effects of Chemical and Physical Properties of Influent on Copper Sorption onto Activated Carbon Fixed-bed Columns", Carbon, 41, pp. 1635-1644. (2003). https://doi.org/10.1016/S0008-6223(03)00117-9
  6. Chen, J. P. and Wu, S., "Acid/Base-Treated Activated Carbons: Characterization of Functional Groups and Metal Adsorptive Properties", Langmuir, 20(6), pp. 2233-2242. (2004). https://doi.org/10.1021/la0348463
  7. Monser, L. and Adhoum, N., "Tartrazine Modified Activated Carbon for the Removal of Pb(II), Cd(II) and Cr(II)", J. Hazard. Mater., 161(1), pp. 263-269. (2009). https://doi.org/10.1016/j.jhazmat.2008.03.120
  8. Bailey, S. E., Olin, T. J., Bricka, R. M. and Adrian, D. D., "A Review of Potentially Low-cost Sorbents for Heavy Metals", Wat. Res., 33(11), pp. 2469-2479. (1999). https://doi.org/10.1016/S0043-1354(98)00475-8
  9. Babel, S. and Kurniawan, T. A., "Low-cost Adsorbents for Heavy Metals Uptake from Contaminated Water: A Review", J. Hazard. Mater., 97(1-3), pp. 219-243. (2003). https://doi.org/10.1016/S0304-3894(02)00263-7
  10. Lee, S. J., Lee, M. E., Chung, J. W., Park, J. H., Huh, K. Y. and Jun, G. I., "Immobilization of Lead from Pb-contaminated Soil Amended with Peat Moss", Journal of Chemistry, 2013, 6p (2013).
  11. Lee, M. E., Lee, C. Y., Kang, S., Kim, S. H., Cho, Y., Kim, S. H. and Chung, J. W., "Adsorption Property of Heavy Metals onto MCM-41 and Expanded Graphite", J. of KSWW, 26(2), pp. 275-283. (2012).
  12. Lagergren, S., "Zur Theorie der Sogenannten Adsorption Geloster Stoffe", K. Sven. Vetenskapsakad, Handl, 24, pp. 1-39 (1898).
  13. Ho, Y. S., "Review of Second-order Models for Adsorption Systems", J. Hazard. Mater., 136(3), pp. 681-689. (2006). https://doi.org/10.1016/j.jhazmat.2005.12.043
  14. Kumar, A., Kumar, S., Kumar, S. and Gupta, D. V., "Adsorption of Phenol and 4-Nitrophenol on Granular Activated Carbon in Basal Salt Medium: Equilibrium and Kinetics", J. Hazard. Mater., 147(1-2), pp. 155-166. (2007). https://doi.org/10.1016/j.jhazmat.2006.12.062
  15. Pellera, F. M., Giannis, A., Kalderis, D., Anastasiadou, K., Stegmann, R., Wang, J. Y. and Gidarakos, E., "Adsorption of Cu(II) ions from Aqueous Solutions on Biochars Prepared from Agricultural By-products", J. Environ. Manage., 96(1), pp. 35-42. (2012). https://doi.org/10.1016/j.jenvman.2011.10.010