• Title/Summary/Keyword: equilibrium isotherm

Search Result 366, Processing Time 0.025 seconds

Study of Equilibrium, Kinetic and Thermodynamic Parameters about Fluorescein Dye Adsorbed onto Activated Carbon (활성탄을 이용한 플루오레세인 염료 흡착에 대한 평형, 동력학 및 열역학 파라미터의 연구)

  • Lee, Jong-Jib;Um, Myeong Heon
    • Applied Chemistry for Engineering
    • /
    • v.23 no.5
    • /
    • pp.450-455
    • /
    • 2012
  • The paper includes the utlization of an activated carbon as a potential adsorbent to remove a hazardous fluorescein dye from an aqueous solution. Batch adsorption experiments were carried out for the removal of fluorescein dyes using a granular activated carbon as an adsorbent. The effects of various parameters such as pH, amount of adsorbent, contact time, initial concentration and temperature of the adsoprtion system were investigated. The experimental results revealed that activated carbon exhibit high efficiencies to remove fluorescein dyes from the aqueous solution. The equilibrium process can be well described by Freundlich isotherm in the temperature range from 298 K to 318 K. From adsorption kinetic experiments, the adsorption process followed a pseudo second order kinetic model, and the adsorption rate constant ($k_2$) decreased with increasing the initial concentration of fluorescein. The free energy of adsorption ${\Delta}G^0$), enthalpy ${\Delta}H^0$), and entropy (${\Delta}S^0$) change were calculated to predict the nature adsorption. The estimated values for ${\Delta}G^0$ were -17.11~-20.50 kJ/mol over an activated carbon at 250 mg/L, indicated toward a spontaneous process. The positve value for ${\Delta}H^0$, 33.2 kJ/mol, indicates that the adsorption of fluorescein dyes on an activated carbon is an endothermic process.

Equilibrium, Kinetic and Thermodynamic Parameter Studies on Adsorption of Allura Red from Aqueous Solution by Granular Activated Carbon (입상활성탄에 의한 수용액으로부터 오로라 레드의 흡착에 대한 평형, 동력학 및 열역학 파라미터에 관한 연구)

  • Lee, Jong-Jib
    • Applied Chemistry for Engineering
    • /
    • v.25 no.4
    • /
    • pp.430-436
    • /
    • 2014
  • Allura Red (AR) is a water-soluble harmful tar-based food colorant (FD & C Red 40). Batch adsorption studies were performed for the removal of AR using bituminous coal based granular activated carbon as adsorbent by varying the operation parameters such as adsorbent dosage, initial concentration, contact time and temperature. Experimental equilibrium adsorption data were analyzed by Langmuir, Freundlich and Temkin isotherms. The equilibrium process was described well by Freundlich isotherm. From determined separation factor ($R_L$), adsorption of AR by granular activated carbon could be employed as effective treatment method. Temkin parameter, B was determined to 1.62~3.288 J/mol indicating a physical adsorption process. By estimation of adsorption rate experimental data, the value of intraparticle diffusion rate constant ($k_m$) increased with the increasing adsorption temperature. The adsorption process were found to confirm to the pseudo second order model with good correlation. Thermodynamic parameters like change of free energy, enthalpy, and entropy were also calculated to predict the nature adsorption in the temperature range of 298~318 K. The negative Gibbs free energy change (${\Delta}G$ = -2.16~-6.55 kJ/mol) and the positive enthalpy change (${\Delta}H$ = + 23.29 kJ/mol) indicated the spontaneous and endothermic nature of the adsorption process, respectively.

Determination of Adsorption Isotherms of Hydrogen at an Ir Electrode Interface Using the Phase-Shift Method and Correlation Constants (Ir 전극 계면에서 위상이동 방법 및 상관계수를 이용한 수소의 흡착동온식 결정)

  • Jeon, Sang-K.
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.2
    • /
    • pp.132-140
    • /
    • 2007
  • The phase-shift method and correlation constants for studying a linear relationship between the behavior ($-{\varphi}\;vs.\;E$) of the phase shift ($0^{\circ}{\leq}-{\varphi}{\leq}90^{\circ}$) for the optimum intermediate frequency and that (${\theta}\;vs.\;E$) of the fractional surface coverage ($1{\geq}\theta{\geq}0$) have been proposed and verified to determine the Langmuir, Frumkin, and Temkin adsorption isotherms (${\theta}\;vs.\;E$) at noble metal/aqueous electrolyte interfaces. At an Ir/0.1 M KOH aqueous electrolyte interface, the Langmuir and Temkin adsorption isotherms (${\theta}\;vs.\;E$), equilibrium constants ($K=3.3{\times}10^{-4}\;mol^{-1}$ for the Langmuir and $K=3.3{\times}10^{-3}{\exp}(-4.6{\theta})\;mol^{-1}$ for the Temkin adsorption isotherm), interaction parameter (g = 4.6 for the Temkin adsorption isotherm), and standard free energies (${\Delta}G_{ads}^0=19.9kJ\;mol^{-1}\;for\;K=3.3{\times}10^{-4}\;mol^{-1}$ and $16.5<{\Delta}G_{\theta}^0<23.3\;kJ\;mol^{-1}\;for\;K=3.3{\times}10^{-3}{\exp}(-4.6{\theta})\;mol^{-1}\;and\;0.2<\theta<0.8$) of H for the cathodic $H_2$ evolution reaction are determined using the phase-shift method and correlation constants. The inhomogeneous and lateral interaction effects on the adsorption of H are negligible. At the intermediate values of ${\theta},\;i.e,\;0.2<{\theta}<0.8$, the Temkin adsorption isotherm (${\theta}\;vs.\;E$) correlating with the Langmuir or the Frumkin adsorption isotherm (${\theta}\;vs.\;E$), and vice versa, is readily determined using the correlation constants. The phase-shift method and correlation constants are accurate and reliable techniques to determine the adsorption isotherms (${\theta}\;vs.\;E$) and related electrode kinetic and thermodynamic parameters(K, g, ${\Delta}G_{ads}^0, {\Delta}G_{\theta}^0$).

Effects of Change in Soil pH and Treatment of Gibbsite and Organic Matter on Sulfate Adsorption in Soils (Gibbsite와 유기물(有機物) 처리(處理) 및 pH변화(變化)가 토양(土壤)의 SO4= 흡착(吸着)에 미치는 영향(影響))

  • Yoon, Sun-Kang;Yoo, Sun-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.19 no.2
    • /
    • pp.107-113
    • /
    • 1986
  • Laboratory experiments were carried out to investigate the effects of pH, gibbsite, and organic matter on sulfate adsorption by soils. Samples of five soil series (Songjeong, Gopyung, Yeasan, Gyorae, and Namwon), different in physical and chemical properties, were used in this study. The results obtained from sulfate adsorption experiment with sulfate solutions of the concentrations ranging from 50 to 400 ppm were as follows: 1. The adsorption phenomena for five soils were well described by the Freundlich adsorption isotherm over a given range of sulfate concentration. 2. The amounts of sulfate adsorbed and K value of Freundlich adsorption isotherm increased as the initial pH of the suspension decreased. 3. Although the changes in pH of the suspension on the adsorption equilibrium were hardly observed in the soil treated with gibbsite, the sulfate adsorption rates were increased with amount of gibbsite treated. 4. The effects of pH of the suspension on the adsorption rates in the soils treated with gibbsite were remarkable at the level of 0.1% but were little at the level of 1.5%. 5. The adsorption rates of soils, treated with organic matter and incubated for three weeks, were in the order: starch > straw > compost. At the relatively high levels (5 and 10%) of treatments, compost treatment resulted in the sulfate desorption phenomena.

  • PDF

An Estimation of Breakthrough Curve of Activated Carbon Adsorption Column (활성탄 흡착칼럼의 농도변화곡선 추정)

  • Yang, Ho-Yeon;Park, Chong-Mook;Song, Myung-Jae;Oh, Chang-Yong;Han, Neung-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.2
    • /
    • pp.217-229
    • /
    • 2000
  • Adsorption equilibrium experiments for the phenol on granular activated carbon(16~25 mesh) and powder activated carbon(325 mesh) were carried out at $25{\pm}1^{\circ}C$ and the results were expressed with Freundlich isotherm. Adsorption rate experiments were executed in batch adsorption system under the condition that can be neglecting mass transfer resistance at the external surface of the particle. The results were analysed with the Miller's method to evaluate the linear driving force(LDF) adsorption rate constant. Fixed bed adsorption experiments were performed by adopting different flow rates in the activated carbon-phenol system at $25{\pm}1^{\circ}C$. The theoretical breakthrough curves were estimated with the simple constant pattern solution. The adsorption rate constant of LDF model was not a fixed value but variable with adsorption amount. The experimental results were better agreed with the estimation of breakthrough curve using the variable adsorption rate constant than the results estimated using the average fixed adsorption rate constant.

  • PDF

Characterization of Natural Zeolite for Removal of Radioactive Nuclides (방사성 핵종 제거를 위한 천연 제올라이트 특성 연구)

  • Kim, Hu Sik;Park, Won Kwang;Lee, Ha Young;Park, Jong Sam;Lim, Woo Taik
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.41-51
    • /
    • 2014
  • The four natural zeolites collected in Pohang and Gyeongju area, Kyungsangbuk-do, Korea, were characterized by XRD, XRF, DTA, TGA, and CEC analysis. The primary species of these zeolite are heulandite, modenite, illite, and illite in Kuryongpo (Ku), Pohang (Po), Yangbuk-A (Ya-A), and Yangbuk-B (Ya-B) samples. The XRF analysis showed that the four zeolites contain Si, Al, Na, K, Mg, Ca, and Fe. Cation exchange capacity of Kuryongpo (Ku) zeolite was the highest compared to other zeolites. The adsorption capacities of Cs and Sr in the four natural zeolites were compared at $25^{\circ}C$. On the basis of adsorption data Langmuir and Freundlich adsorption isotherm model were confirmed. The equilibrium process was descried well by Langmuir isotherm model. This study shows that Ya-A zeolite is the most efficient for the $Cs^+$ and $Sr^{2+}$ ion adsorption compared to the other natural zeolites.

Adsorption/Desorption Characteristics of Vanadium from Ammonium Metavanadate using Anion Exchange Resin (음(陰)이온교환수지(交換樹脂)를 이용한 Ammonium Metavanadate로부터 바나듐 흡탈착(吸脫着) 특성(特性))

  • Jeon, Jong Hyuk;Kim, Young Hun;Hwang, In Sung;Lee, Jin Young;Kim, Joon Soo;Han, Choon
    • Resources Recycling
    • /
    • v.22 no.1
    • /
    • pp.55-63
    • /
    • 2013
  • Considering considerable contents of vanadium and tungsten in spent SCR DeNOx catalysts, separation and recovery of those metals are required. In this respect, commercial anion exchange resin (MP600) was employed to recover vanadium from the synthetic solution of ammonium metavanadate. Experimental results indicated that vanadium exist as anion under the acidic condition (pH 2 ~ 6) and adsorbed on the resin. Although the adsorption rate was increased with temperature, the maximum amount of adsorption was not affected by temperature. Desorption took place under either strong acidic (less than pH 1) or strong caustic (higher than pH 13) condition. However, desorption seldom took place under moderate conditions (pH 3~11). Furthermore, adsorption equilibrium results agreed well with Freundlich isotherm and pseudo-second-order reactions. And, adsorption energy was evaluated using Dubinin-Radushkevich and Temkin isotherm.

Studies on Adsorption Behaviour for Heavy Metal Ions from Waste Water Using Eco-philic Cellulose Derivatives (환경친화형 셀룰로오스계 유도체의 합성 및 폐수내 중금속 이온 흡착거동 연구)

  • Lee, Soon-Hong;Bae, Joong-Don
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.11
    • /
    • pp.1146-1152
    • /
    • 2005
  • Graft copolymers were synthesized from methylcellulose(MC) and acrylic acid(AA) with active carboxyl groups in the presence of potassium persulfate($K_2S_2O_8$) initiator to enhance adsorption capacity of toxic heavy metal such as $Pb^{2+}$ and $Cu^{2+}$ from wastewater. The resulting grafted copolymers(MC-g-AA/PAA) were mixture of the graft copolymers from MC and AA(MC-g-AA) and polyacrylic acid homopolymers(PAA). The degree of palling was increased with rising concentration of monomer and initiator under the reaction conditions at $60^{\circ}C$, 3 hrs. The water insoluble property of MC-g-AA showed more than 19.7% degree of grafting. So that it could be an adsorbent of heavy metals. Adsorption characteristics of the MC-g-AA were evaluated depending on the degree of grading, pH of wastewater, adsorption time, dosage of MC-g-AA and concentration of heavy metals in the different conditions. Degree of grafting, and initial concentration of heavy metal ions increased, the adsorption amount of $Pb^{2+}$ and $Cu^{2+}$ increased, but added MC-g-AA increased, the adsorption amount per unit weight of $Pb^{2+}$ and $Cu^{2+}$ decreased. The MC-g-AA showed the high $Pb^{2+}$ and $Cu^{2+}$ adsorption amount in the range pH $4{\sim}6$. Also all of $Pb^{2+}$ and $Cu^{2+}$ ions reached in adsorption equilibrium in neighborhood 4 hours. The adsorption of heavy metals described by Freundlich isotherm, it was determined the value of l/n of $Pb^{2+}$ and $Cu^{2+}$ that 0.4294 and 0.3453, respectively.

Comparison of Steel Slag and Activated Carbon for Phosphate Removal from Aqueous Solution by Adsorption (폐수 내 인 흡착 제거를 위한 제강슬래그와 활성탄 비교)

  • Lee, Seung-Han;Kim, Chang-Kyu;Park, Jung-Geun;Choi, Dong-Kwang;Ahn, Johng-Hwa
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.5
    • /
    • pp.303-309
    • /
    • 2017
  • This study investigated the potential use of steel slag (SS) (0.5~2.0 g/200 mL) for the removal of phosphate from wastewater compared with activated carbon (AC) (3.0~6.0 g/200 mL). The adsorption equilibrium data were best represented by Langmuir isotherm and its calculated maximum adsorption capacity was 91 mg/g for SS, 27 mg/g for AC. The adsorption kinetics was found to follow the pseudo-second order kinetics model and its rate constant was $0.0232{\sim}0.1357g/mg{\cdot}min$ for SS, $0.0247{\sim}0.1221g/mg{\cdot}min$ for AC. The overall uptake for the SS and AC was maximum at pH 2. Therefore, it can be concluded that steel slag could play an effective role in reducing phosphate concentration compared with activated carbon.

Studies on Heavy Metal Ion Adsorption by Soils. -(Part 1) PH and phosphate effects on the adsorption of Cd, Cu, Ni and Zn by mineral soils with low CEC and low organic carbon content (중금속(重金屬) 이온의 토양(土壤) 흡착에 관한 연구 -(제1보) CEC 및 유기탄소 함량이 낮은 광물토양에의 Cd, Cu, Ni, 및 Zn의 흡착과 이에 미치는 pH 및 인산의 효과-)

  • Kim, Myung-Jong;Motto, Harry L.
    • Applied Biological Chemistry
    • /
    • v.20 no.3
    • /
    • pp.300-309
    • /
    • 1977
  • The information related to the heavy metal pollution in the environment was obtained from studies on the effects of pH, phosphate and soil properties on the adsorption of metal ions (Cd, Cu, Ni, and Zn) by soils. Three soil materials; soil 1 with low CEC (8.2 me/100g) and low organic carbon content (0.34%); soil 2 with high CEC (36.4 me/100g) and low organic carbon content (1.8%) and soil 3 with high CEC (49.9 me/100g) and high organic carbon content (14.7%) were used. Soils were adjusted to several pH's and equilibrated with metal ion mixtures of 4 different concentrations, each having equal equivalents of each metal ion (0.63, 1.88, 3.12 and 4.38 micromoles per one gram soil with and without 10 micromoles of phosphate per one gram soil). Reported here are the results of the equilibrium study on soil I. The rest of the results on soil 2 and soil 3 will be repoted subsequeutly. Generally higher metal ion concentration solution resulted in higher final metal ion concentrations in the equilibrated solution and phosphate had minimal effect except it tended to enhance removal of cadmium and zinc from equilibrated solutions while it tended to decrease the removal of copper and nickel. In soil 1, percentages of added metal ions removed at pH 5.10 were; Cu 97, Ni 69, Cd 63, and Zn 55, while increasing pH to 6.40, they were increased to Cu 90.9, Zn 99, Ni 96, and Cd 92 per As initial metal ion concentration increased, final metal ion concentrations in the equilibrated solution showed a relationship with pH of the system as they fit to the equation $p[M^{++}]=a$ pH+b where $p[M^{++}]=-log$[metal ion concentration in Mol/liter]. The magnitude of pH and soil effects were reflected in slope (a) of the equation, and were different among metal ions and soils. Slopes (a) for metal ions in the aqueous system are all 2. In soil 1 they were; Zn 1.23, Cu 0.99, Ni 0.69 and Cd 0.59 at highest concentration. The adsorption of Cd, Ni, and Zn in soil 1 could be represented by the Iangmuir isotherm. However, construction of the Iangmuir isotherm required the correction for pH differences.

  • PDF