• Title/Summary/Keyword: equilibrium gas

Search Result 485, Processing Time 0.026 seconds

High-Pressure Droplet Vaporization with Emphasis on the Vapor-Liquid Equilibrium Calculation (플래쉬 상평형 계산에 의한 고압 액적기화의 수치적 연구)

  • Lee, Kang-Won;Chae, Jong-Won;Yoon, Woong-Sup
    • 한국연소학회:학술대회논문집
    • /
    • 2001.06a
    • /
    • pp.106-118
    • /
    • 2001
  • A rigorous study of single droplet vaporization under quiescent high pressure atmosphere is attempted adopting method of flash evaporation calculation for vapor-liquid equilibrium. Results due to flash method shows excellent agreement with measurement. Also shown is the present model fairly capable of depicting transients of droplet vaporization under high pressure environment, such as ambient gas solubility, property variation, and multicomponent transports. Systematic treatment of these effects with emphasis on vapor-liquid phase equilibrium revealed; conventional treatment for subcritical droplet vaporization, such as $d^2$-law, leads to erroneous prediction of droplet history, augmented gas solubility is significant under supercritical pressure, and vaporization rate proportionally increase with pressure.

  • PDF

Magnetic Separation of FCC Equilibrium Catalyst by HGMS

  • Xiang, Fazhu;He, Pingbo;Chen, Jin
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.770-775
    • /
    • 2001
  • Effects of magnetic field and carrier gas velocity on the magnetic separation of FCC catalyst by a high gradient magnetic separator were studied. The activities of the equilibrium catalyst, the magnetic particles and the nonmagnetic particles were evaluated in a fixed bed microreactor The results showed that heavy metal contaminated catalyst can be selectively separated by means of high gradient magnetic separation at magnetic field 0.5T and carrier gas velocity 0.3m.s$^{-1}$ , and lightly metal contaminated catalyst retained high catalytic activity.

  • PDF

ESTIMATION OF RAIN SCAVENGING RATIO FOR PARTICLE BOUND POLYCYCLIC AROMATIC HYDROCARBONS AND POLYCHLORINATED BIPHENYLS

  • Kim, Hyeon-Kook;Shin, Yong-Seung;Lee, Dong-Soo;Song, Byung-Joo;Kim, Jong-Guk
    • Environmental Engineering Research
    • /
    • v.11 no.1
    • /
    • pp.33-44
    • /
    • 2006
  • The objective of this study was to develop and assess a method for estimating the rain scavenging ratios (RSRs) of particle-bound PAHs and PCBs using measured scavenging ratio of particulate matters (PM) and routinely available data of physico-chemical properties of PM. Paired atmospheric and rainwater sampling was conducted for a total of 4 rain events. Assuming equilibrium partitioning in rainwater-gas-PM system, an equation was derived for estimating the RSR of particle-bound chemicals as a function of RSR of PM and three equilibrium partition constants (i.e. dimensionless Henry's law constant, gas-particle partition coefficient, and water-particle partition coefficient). For all PAHs, the model significantly under-predicted the RSR while the model prediction for PCBs agreed with observation mostly within a factor of 5. The RSR model for the chemicals is of limited use as its accuracy critically depends on how close the observed partitioning of the chemicals in the gas-PM-rainwater system is to that estimated under the equilibrium assumption.

Shocked $H_2$ Gas with Non-equilibrium Ortho-to-Para Ratios Observed from Two Supernova Remnants IC 443 and HB 21

  • Shinn, Jong-Ho;Koo, Bon-Chul;Lee, Ho-Gyu;Moon, Dae-Sik
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.114.1-114.1
    • /
    • 2011
  • We present the near-infrared spectra (2.5-5.0 um) of shocked $H_2$ gas, observed with the InfraRed Camera onboard the satellite AKARI. Two supernova remnants, IC 443 and HB 21, were observed, and they all showed the ortho-to-para ratios (OPRs) of less than 3.0: 2.1-2.2 for IC 443 and 1.6-1.8 for HB 21. These non-equilibrium OPRs are first reported at E(v,J) > 7000 K, as far as we are aware of. Based on our previous study, we try to interpret that the non-equilibrium OPRs originate from dissociative J-shocks. Dissociative J-shocks mainly generate infrared H2 emissions from their $H_2$ reformation zone, and the OPR of 3.0 are expected for the reformed $H_2$ from the theoretical study. This is contradictory to our observational results. We propose other possible origins of the non-equilibrium OPRs, such as, abnormal $H_2$ reformation, partially dissociative J-shocks, etc.

  • PDF

Identifuication of College Student's And Teacher's Conceptions for Chemical Equilibrium and Equilibrium Shift (화학평형과 평형이동에 대한 대학생과 교사들의 개념조사)

  • Park, Jong Yun;Park, Hyeon Ju
    • Journal of the Korean Chemical Society
    • /
    • v.46 no.3
    • /
    • pp.265-278
    • /
    • 2002
  • A concept test was administered to college students and teachers to identify their understanding of chemical equilibrium and equilibrium shift. The subjects were 53 freshmen in the General Chemistry class, 28 juniors in the Physical Chemistry class and 26 seniors from a university and 10 high school teachers in Seoul. Test items include the calculations of partial pressure and concentration of the gas in the mixture, the equilibrium constant cal-culation and the prediction of equilibrium shift when an inert gas is added to the gaseous reaction system, and the equilibrium concentration calculation and the prediction of equilibrium shift when water or common ion is added to the weak acid solution. The test was focused to identify whether the subjects can predict equilibrium shift using the reaction quotient change for the situations in which Le Chatelier principle is difficult to apply. The results showed that the achievements of teachers and juniors were significantly higher than those of freshmen and seniors. Many stu-dents had difficulties in predicting equilibrium shift using the reaction quotient while they could calculate partial pres-sure and concentration for the same situation. It means they are lack of conceptual understanding of chemical equilibrium shift.

An Asymptotic Analysis of Excess Enthalpy Flame (초과엔탈피 화염의 점근 해석)

  • Lee, Dae Keun
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.135-137
    • /
    • 2014
  • Excess enthalpy flame propagating an porous inert medium, which recirculate exhaust heat to the upstream cold mixture, is theoretically analyzed. Using the activation-energy asymptotics, the flame structure is divided into the thin reaction and the gas-phase preheat zone, as is traditionally done. Ahead and behind of the two, there exist an outer preheat zone, where heat is convectively transferred from solid to gas, and a downstream re-equilibrium zone, where thermal equilibrium between phases is established. Asymptotic solutions of species and energy equations in each zone are obtained and then matched to each other, and finally the mass burning rate is obtained as a function of the flame propagation velocity with respect to the solid phase and physical properties of gas and solid.

  • PDF

Seasonal Variation of Nitrate in the Greater Seoul Area Using a Photochemical Box Model and a Gas/Aerosol Equilibrium Model (광화학 상자모델과 기체/입자 평형모델을 이용한 서울ㆍ수도권의 계절별 질산염 농도 변화)

  • Lee S.;Ghim Y. S;Kim Y. P;Kim J. Y
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.6
    • /
    • pp.729-738
    • /
    • 2004
  • Seasonal variation of major inorganic ions in the greater Seoul area was estimated using a photochemical box model and a gas/aerosol equilibrium model with emphasis on semi -volatile nitrate. Pollutant emission was determined by season by comparing the predicted concentration with the measurement one obtained for a year from the late 1996. The results showed that particulate nitrate was the highest in summer but about 40% of total nitrate was present in the gas phase. This was due to volatilization at high temperature since ammonia was sufficient to neutralize all nitrate regardless of season. As relative humidity in summer was higher than the deliquescence point, particulate ion concentration with water was two times higher than that in other season. So called ‘NOx disbenefit’ indicating increase in particulate ion concentration with decrease in NOx emission was evident especially in winter.

Oxy-Fuel and Flue Gas Recirculation Combustion Technology: A Review (순산소 및 배가스 재순환 연소 기술)

  • Kim, Hyeon-Jun;Choi, Won-Young;Bae, Soo-Ho;Shin, Hyun-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.10
    • /
    • pp.729-753
    • /
    • 2008
  • Oxy-fuel combustion is a reliable way for the reduction of pollutants, the higher combustion efficiency and the separation of carbon dioxide. The review of recent research trends and the prospects of oxy-fuel combustion were presented. The difference in characteristics among oxy-fuel combustion, conventional air combustion, oxy-fuel combustion with flue gas recirculation (FGR) technique was investigated. Recent experiments of oxy-fuel combustion with/without FGR were surveyed in various ways which are optimized burner design, flame characteristics, the soot emission, the radiation effect, the NOx reduction and the corrosion of combustor. Numerical simulation is more important in oxy-fuel combustion because flame temperature is so high that conventional measurement devices have a restricted application. Equilibrium and non-equilibrium chemical reaction mechanisms for oxy-fuel combustion were investigated. Combustion models suitable for the numerical simulation of non-premixed oxy-fuel flame were surveyed.

Working partial pressure of $CO_2$ gas in aqueous solution

  • Kim Dong-Su
    • Resources Recycling
    • /
    • v.14 no.4 s.66
    • /
    • pp.47-52
    • /
    • 2005
  • Carbonate species in aqueous solution play an important role in the determination of chemical properties of water in relation with alkalinity, buffer capacity, biological productivity, and so on. These compounds also have reactive characteristics such as interphasal reactions between solid, liquid, and gas phases. In the absence of solid materials, the total amount and relative abundance of each carbonate species are directly influenced by the partial pressure of $CO_2$ gas in the atmosphere, which in turn significantly affects the properties of aquatic system. In the water/wastewater treatment process along with the wastes treatment and recycling process which occurring in aquatic environment, it is essential to figure out its characteristics for their optimization and one of its most influential features upon these processes is determined by carbonate species. To understand the fundamental aspect of the relationship between the partial pressure of $CO_2$ gas and chemical features of water, especially pH, the working partial pressure of pure $CO_2$ gas that produced by contacting the dry ice with water has been estimated based on equilibrium calculation. The equilibrium constants for the dissociation ot carbonic acid were determined using van't Hoff equation and the distribution diagram of carbonate species according to the pH has been constructed to substantiate the results of equilibrium calculation. The estimated working partial pressure of pure $CO_2$ gas was found to be a function of the concentration of carbonates in solution, which suggesting that Prior evaluation of the working partial pressure of gas is essential for a better understanding of aquatic interactions.

An Experimental Study of Vapor-Liquid Equilibrium for HFC12S+Propane Refrigerant Mixtures (HFC125+Propane 혼합냉매의 기-액 평형에 관한 실험적 연구)

  • 강준원;박영무;유재석;이종화
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.7
    • /
    • pp.563-571
    • /
    • 2003
  • The forty vapor-liquid equilibrium data of the binary system, HFC125+Propane, were measured between 273.15 and 313.15 K at 10 K interval and the composition range 0.2∼0.75, respectively. Experiments were performed in a circulation type apparatus in which the vapor phase was forced through the liquid phase. The composition at equilibrium were mea-sured by gas chromatography, and its response was calibrated using gravimetrically prepared mixtures. Vapor-liquid equilibrium data were calculated by using CSD equation of state and compared with the experimental data.