• Title/Summary/Keyword: equilibrium analysis

Search Result 2,198, Processing Time 0.026 seconds

Potential Economic Impacts of the Vietnam-Korea Free Trade Agreement on Vietnam

  • Phan, Thanh Hoan;Jeong, Ji Young
    • East Asian Economic Review
    • /
    • v.20 no.1
    • /
    • pp.67-90
    • /
    • 2016
  • This paper provides an assessment of the potential economic impacts of the Vietnam-Korea free trade agreement on Vietnam, by using general equilibrium modeling. The results show that Vietnam-Korea FTA will increase aggregate welfare for both countries in the long run. The most important gains accrue from better allocation of resources consequent to trade liberalization. All the sectoral differences and changes are consistent with the trade profiles of the two countries, and the long-run results are more pronounced than those of the short-run. In comparison with other ASEAN countries, the CGE analysis suggests that Vietnam's agriculture exports to Korea would especially rise in the long run. However, there will be strong competition in this sector among ASEAN members. Thus, an earlier conclusion of a comprehensive FTA with Korea is expected to be a good strategy for Vietnam, so as to avoid the direct competition with ASEAN members in the future.

STABILITY AND BIFURCATION ANALYSIS FOR A TWO-COMPETITOR/ONE-PREY SYSTEM WITH TWO DELAYS

  • Cui, Guo-Hu;Yany, Xiang-Ping
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.6
    • /
    • pp.1225-1248
    • /
    • 2011
  • The present paper is concerned with a two-competitor/oneprey population system with Holling type-II functional response and two discrete delays. By linearizing the system at the positive equilibrium and analyzing the associated characteristic equation, the asymptotic stability of the positive equilibrium and existence of local Hopf bifurcations are investigated. Particularly, by applying the normal form theory and the center manifold reduction for functional differential equations (FDEs) explicit formulae determining the direction of bifurcations and the stability of bifurcating periodic solutions are derived. Finally, to verify our theoretical predictions, some numerical simulations are also included at the end of this paper.

A NONSTANDARD FINITE DIFFERENCE METHOD APPLIED TO A MATHEMATICAL CHOLERA MODEL

  • Liao, Shu;Yang, Weiming
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.6
    • /
    • pp.1893-1912
    • /
    • 2017
  • In this paper, we aim to construct a nonstandard finite difference (NSFD) scheme to solve numerically a mathematical model for cholera epidemic dynamics. We first show that if the basic reproduction number is less than unity, the disease-free equilibrium (DFE) is locally asymptotically stable. Moreover, we mainly establish the global stability analysis of the DFE and endemic equilibrium by using suitable Lyapunov functionals regardless of the time step size. Finally, numerical simulations with different time step sizes and initial conditions are carried out and comparisons are made with other well-known methods to illustrate the main theoretical results.

Development of Equilibium Flow Calculation Program Using a Modified Newtonian Method (수정 뉴토니안 방법을 이용한 평형유동 해석 프로그램 개발)

  • Choi, Jaehyeok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.483-491
    • /
    • 2016
  • A simple aerodynamic calculation program for high Mach number flow is developed by combining the modified Newtonian method with Tannehill's curve fits for the thermodynamic properties of air in equilibrium state. Aerodynamic characteristics for a parabolic nose are predicted and compared with CFD(Computational Fluid Dynamics) analysis results. Comparison shows good agreements, and the developed program is expected to be a practical tool for slender body aerodynamic calculation for high Mach number flow.

A COMPUTATIONAL ANALYSIS OF FINITE RATE CHEMICALLY REACTING FLOW BY USING UPWIND N-S METHOD

  • Seo J. I.;Kwon C. O.;Song D. J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.166-171
    • /
    • 2000
  • A two-dimensional/axisymmetric CSCM upwind flux difference splitting Wavier-Stokes method has been developed to study the finite rate chemically react-ing invisicd and viscous hypersonic flows over blunt-body. A upwind method was chosen due to its robustness in capturing the strong bow shock waves. For the nonequilibrium chemically reacting air, NS-I species conservation equations were strongly coupled with flowfield equations through convection and species production terms. The nonequilibrium wall pressure and heat transfer rate distributions along the vehicle were compared with those from equilibrium and perfect gas calculations. The nonequilibrium species distribution shows the reduced concentrations of O and N species when compared with equilibrium species distribution. The solutions resolved strong bow shock waves md heat transfer rate very accurately when compared with central difference schemes.

  • PDF

Numerical Calculations and Analyses in Diagonal Type Magnetohydrodynamic Generator

  • Le, Chi Kien
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1365-1370
    • /
    • 2013
  • This paper examines the effects of magnetic induction attenuation on current distribution in the exit regions of the Faraday-type, non-equilibrium plasma Magnetohydrodynamic (MHD) generator by numerical calculation using cesium-seeded helium. Calculations show that reasonable magnetic induction attenuation creates a very uniform current distribution near the exit region of generator channel. Furthermore, it was determined that the current distribution in the middle part of generator is negligible, and the output electrodes can be used without large ballast resistors. In addition, the inside resistance of the exit region and the current concentration at the exit electrode edges, both decrease with the attenuation of magnetic flux density. The author illustrates that the exit electrodes of the diagonal Faraday-type, non-equilibrium plasma MHD generator should be arranged in the attenuation region of the magnetic induction, in order to improve the electrical parameters of the generator.

Underlying Control Strategy of Human Leg Posture and Movement

  • Park, Shinsuk
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.649-663
    • /
    • 2004
  • While a great number of studies on human motor control have provided a wide variety of viewpoints concerning the strategy of the central nervous system (CNS) in controlling limb movement, none were able to reveal the exact methods how the movement command from CNS is mapped onto the neuromuscular activity. As a preliminary study of human-machine interface design, the characteristics of human leg motion and its underlying motor control scheme are studied through experiments and simulations in this paper. The findings in this study suggest a simple open-loop motor control scheme in leg motion. As a possible candidate, an equilibrium point control model appears consistent in recreating the experimental data in numerical simulations. Based on the general leg motion analysis, the braking motion by the driver's leg is modeled.

Free Vibrations of Ocean Cables under Currents (조류력을 받는 해양케이블의 자유진동해석)

  • 김문영;김남일;윤종윤
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.11 no.4
    • /
    • pp.231-237
    • /
    • 1999
  • A geometric non-linear finite element formulation of spatial ocean cable under currents is presented using multiple noded curved cable elements. Tangent stiffness and mass matrices for the isoparametric cable ele¬ment are derived and the initial equilibrium state of ocean cable subjected to self-weights, buoyancy, and current as well as support motions is determined using the load incremental method. Free vibration analysis of ocean cables is performed based on the initial equilibrium configuration. Numerical examples are presented and discussed in order to demonstrate the feasibility of the present finite element method and investigate dynamic characteristics of ocean cables.

  • PDF

A study on the Gasifier Modeling using a Chemical Equilibrium (화학평형을 이용한 가스화기 모델링에 관한 연구)

  • 정근모;임태훈;오인환;박명호
    • Journal of Energy Engineering
    • /
    • v.2 no.3
    • /
    • pp.276-284
    • /
    • 1993
  • This study is to obtain some basic data which are prerequisite for the conceptual design of gasification process based on entrained-bed type gasifier. The Gibbs free energy minimization method is used to analyze the chemical equilibrium in the gasifier. The modeling results which consider the conventional mass balance and heat balance are compared with the experimental data published by Electric Power Research Institute. The analysis shows that the reaction in a entrained-bed gasifier is influenced mainly by the amount of oxidant, by the temperature of gasifier and by the type of coals.

  • PDF

A Variable Demand Traffic Assignment Model Based on Stable Dynamics (안정동력학에 의한 가변수요 통행배정모형)

  • Park, Koo-Hyun
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.34 no.1
    • /
    • pp.61-83
    • /
    • 2009
  • This study developed a variable demand traffic assignment model by stable dynamics. Stable dynamics, suggested by Nesterov and do Palma[19], is a new model which describes and provides a stable state of congestion in urban transportation networks. In comparison with the user equilibrium model, which is based on the arc travel time function in analyzing transportation networks, stable dynamics requires few parameters and is coincident with intuitions and observations on congestion. It is therefore expected to be a useful analysis tool for transportation planners. In this study, we generalize the stable dynamics into the model with variable demands. We suggest a three stage optimization model. In the first stage, we introduce critical travel times and dummy links and determine variable demands and link flows by applying an optimization problem to an extended network with the dummy links. Then we determine link travel times and path flows in the following stages. We present a numerical example of the application of the model to a given network.