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A NONSTANDARD FINITE DIFFERENCE METHOD

APPLIED TO A MATHEMATICAL CHOLERA MODEL

Shu Liao and Weiming Yang

Abstract. In this paper, we aim to construct a nonstandard finite dif-

ference (NSFD) scheme to solve numerically a mathematical model for
cholera epidemic dynamics. We first show that if the basic reproduction

number is less than unity, the disease-free equilibrium (DFE) is locally
asymptotically stable. Moreover, we mainly establish the global stability

analysis of the DFE and endemic equilibrium by using suitable Lyapunov

functionals regardless of the time step size. Finally, numerical simulations
with different time step sizes and initial conditions are carried out and

comparisons are made with other well-known methods to illustrate the

main theoretical results.

1. Introduction

cholera is an acute intestinal infection, caused by ingestion of food or water
which is contaminated with a number of types of Vibrio cholerae, remains a
significant threat to public health for most of the developing countries with
poor sanitation, crowding, war, and famine in the past few years, such as in
Congo (2008), in Iraq (2008), in Zimbabwe (2008-2009), in Vietnam (2009), in
Kenya (2010), in Nigeria (2010), in Haiti (2010), in Mexico (2013), and most
recently in South Sudan (2014). According to the World Health Organization
(WHO) [40] report (2010), cholera has become an acute disease throughout
the world since 1961 and causes 58,000-130,000 deaths a year. In the last few
decades, enormous attention has been paid to the cholera disease and a num-
ber of mathematical models have been contributed to a better understanding
of the transmission of cholera. In 2001, Codeço [10] put an emphasis on the
decisive importance of the environmental component and proposed a SIRB
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epidemic model in which B represents the V. cholerae concentration in wa-
ter. Meanwhile, Hartley Morris and Smith [14] discovered a representative
hyperinfectious state of the pathogen-the ‘explosive’ infectivity of freshly shed
V. cholerae based on the laboratory results. In 2010, Tien and Earn [36]
proposed a water-borne disease model with multiple transmission pathways:
direct human-to-human and indirect water-to-human transmissions, identified
how these transmission routes influence disease dynamics. Mukandavire et al.
[29] in 2011 simplified Hartley’s model to understand transmission dynamics
of cholera outbreak in Zimbabwe. Liao and Wang [19] conducted a dynamical
analysis of the Hartley’s model to study the stability of both the disease-free
and endemic equilibria so as to explore the complex epidemic and endemic dy-
namics of the disease. More papers in the field of cholera epidemic models are
presented in ([8, 20,27,38]).

Nowadays, continuous-time cholera models have been widely studied by
many scholars. However, it is necessary to discretize the continuous models
for practical purposes. First of all, Villanueva et al. [37] in 2008 pointed out
that numerical methods like traditional Euler, Runge-Kutta and some standard
procedures of MATLAB software fail to solve nonlinear systems generating os-
cillations, chaos, and unsteady states if the time step size increases to a critical
size. The second reason is that the results of the discrete time models are more
accurate and convenient to describe infectious diseases and could preserve as
much as possible the qualitative properties of the corresponding continuous
models. Some useful studies can be found in the works of ([1–3, 9, 17, 33]).
Sekiguchi and Ishiwata [34] obtained a discretized SIRS epidemic model with
time delay and the sufficient conditions for global behaviors of the solutions.
The dynamical behaviors of a class of discrete-time SIRS epidemic models
were considered by Hu et al. [16] in 2012, their paper revealed that when the
time step h is sufficiently small, the dynamical behaviors of discrete model
are similar to the continuous-time model, whereas when h becomes large, the
discrete model appears more complex dynamical behaviors, such as flip bifur-
cation, Hopf-bifurcation and chaos phenomenon. Muroya et al. [30] proposed
a discrete epidemic model with immunity and latency spreading in a heteroge-
neous host population by using the backward Euler method, they also focused
on proving the global asymptotic stability with the help of the Lyapunov func-
tion technique when R0 > 1. Wang et al. [39] in 2013 studied a discrete SIRS
model with standard incidence rate, the sufficient conditions were obtained
for the global attractivity of the endemic equilibrium by using the iteration
technique and the comparison principle of difference equations. Ma et al. [21]
studied a discrete SIR epidemic model and obtained some sufficient conditions
for the global stability of the endemic equilibrium. At last, they applied the
discrete model to study the mumps infection in China.

Although there are different approaches to model infectious diseases in dis-
crete time, the nonstandard finite difference (NSFD) scheme developed by
Mickens ([22–24]) is well known and has been applied to many articles in recent
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years. In general, the NSFD method is rooted in an elementary set of directly
and carefully designed laws aimed at preserving the most properties of the cor-
responding continuous-time system, such as positivity, boundedness, stability
of equilibrium points, conservation law and others. An NSFD discretization
must satisfy one of the following two conditions ([4, 5, 25, 26]): (1) nonlocal
approximation is used. (2) discretization of derivative is not traditional and a
denominator function φ(h) = h+ o(h2) is used. However, in some cases, more
complex functions of the time step size are used to replace the classical one.
Mickens [26] introduced that the use of NSFD scheme is always qualitatively
the same asymptotic dynamics of continuous-time model. Villanueva et al.
[37] developed an NSFD scheme to solve numerically a mathematical model
for obesity population dynamics with constant population size. The numerical
results in this paper showed the effectiveness of the proposed nonstandard nu-
merical scheme by comparing with Euler’s method and the fourth-order Runge-
Kutta method. Jodar et al. [18] constructed an NSFD scheme for influenza,
they showed the solutions of the discretized model have the same properties
as the original continuous model. However, they didn’t give the proof of the
global stability. Arenas et al. [6] constructed and developed a competitive
NSFD scheme of predictor-corrector type for the classical SIR epidemic model.
Garba et al. [11] formulated two finite-difference methods, one is standard and
the other is based on the non-standard discretization framework to solve the
continuous-time model. The latter one can capture many essential qualitative
features of the continuous-time model such as positivity and invariance of a so-
lution, backward bifurcation, convergence to the correct equilibrium solution.
Suryanto et al. [35] constructed an NSFD scheme to solve a SIR epidemic
model with modified saturated incidence rate. From their numerical simula-
tions, the NSFD scheme allowed large time step size to save the computational
cost. Guerrero et al. [12] developed an NSFD scheme to solve the prevalence of
smoking in Spain. They compared the NSFD scheme with Euler, trapezoidal
and fourth-order Runge-Kutta methods to conclude that the NSFD was a good
option to solve the mathematical model numerically .

In this paper, motivated by the above studies, we will apply NSFD discretiza-
tion method to solve the prevalence of cholera outbreak in Zimbabwe (2008-
2009), the continuous-time cholera model is originally presented in Mukan-
davire et al. [29]. It must be pointed out that the model in [29] is purely under
the idealized condition that the population always remains a constant and the
natural birth and death rates are assumed equal, which may not be true in the
real world. However, when the disease mortality is included and different nat-
ural birth and death rates are applied, the total population will vary in time.
Thus, we will make two modifications of the original model in Mukandavire et
al. [29], one of which is to enter the susceptible population at any moment is
rate Λ, and the other of which is to define the rate of disease-related death.

To our knowledge, this is the first time to design dynamically consistent
nonstandard finite difference scheme to study cholera model. In addition, we
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notice that much research has only been done on the global stability of the
continuous cholera models, the results on the global stability of the equilibria
for discrete models are quite few because discrete models always exhibit much
more complicated dynamical behaviors, we will solve this difficulty by using
suitable Lyapunov functions in the present paper.

The paper is organized as follows. In Section 2, we modify the continuous
model for describing cholera epidemic which is originally developed by Mukan-
davire et al. [29], where some of its basic dynamical features are presented. In
Section 3, we construct a discretized cholera model from the continuous model
by using the nonstandard finite difference method. The stability properties
of the disease-free and the endemic equilibria are discussed in Section 4 and
Section 5. In Section 6, numerical simulations are carried out to test the numer-
ical stability of this NSFD scheme and performance versus other well-known
schemes. Finally, we close the paper by a discussion in Section 7.

2. ODE model

In this section, we modify the mathematical model which is originally de-
veloped by Mukandavire et al. [29] to understand the transmission dynamics
and ecology of cholera in Zimbabwe (2008-2009). The transmission of cholera
epidemic is different from other diseases since it involves multiple transmission
pathways: both direct human-to-human and indirect environment-to-human
transmissions, thus susceptible population infect cholera either from contam-
inated water at rate βeB

κ+B or from the ingestion of hyperinfectious vibrios at
rate βhI, respectively. We consider the following system of nonlinear ordinary
differential equations:

dS

dt
= Λ− βe

SB

κ+B
− βhSI − µS,(1)

dI

dt
= βe

SB

κ+B
+ βhSI − (γ + µ+ u1)I,(2)

dB

dt
= ξI − δB,(3)

dR

dt
= γI − µR,(4)

where S , I and R denote the susceptible, the infected, and the recovered pop-
ulations, respectively; B denotes the density of V. cholerae. We assume that
new recruits including newborns, travel, etc. enter the susceptible population
at any moment is a constant rate Λ ([13,15,41]). βh and βe denote the concen-
trations of the hyperinfectious (HI) and less-infectious (LI) vibrios, respectively.
µ represents the natural death rate that is not related to the disease, u1 defines
the rate of disease-related death, κ is the concentration of vibrios in contami-
nated water in the environment, ξ the natural decay rate of V. cholerae, δ the
bacterial death rate, and γ the recovery rate. All the parameters are strictly



AN NSFD METHOD APPLIED TO A MATHEMATICAL CHOLERA MODEL 1897

positive constants. The initial conditions of the system (1)-(4) are assumed as
following:

S ≥ 0, I ≥ 0, B ≥ 0, R ≥ 0.(5)

According to Mukandavire’s work, we summarize some dynamical properties
of the continuous model (1)-(4). The basic reproductive number R0 can be
calculated easily as:

R0 =
Λ(ξβe + δκβh)

µδκ(γ + µ+ u1)
.(6)

It can further be proved that disease-free equilibrium E0 and endemic equi-
librium E∗ have the following stability properties:

Theorem 2.1. The disease-free equilibrium of the model system (1)-(4), given
by E0 = (Λ

µ , 0, 0, 0), is locally asymptotically stable and globally asymptotically

stable whenever R0 < 1.

Theorem 2.2. The endemic equilibrium of the model system (1)-(4), given by
E∗ = (S∗, I∗, B∗, R∗), where

S∗ =
Λ

µ
− (γ + µ+ u1)I∗

µ
,

I∗ =
βeS

∗

γ + µ+ u1 − βhS∗
− δκ

ξ
,

B∗ =
ξI∗

δ
,

R∗ =
γI∗

µ
,

is locally asymptotically stable and globally asymptotically stable whenever R0 >
1.

3. The NSFD scheme

In general, the discrete epidemic models obtained by Mickens-type dis-
cretization have the same features as the original continuous-time model ([31,
32]). In this section, we construct a dynamically consistent numerical NSFD
discrete scheme for solving system (1)-(4).

Let us denote tn = nh, with n integer, h = tn+1 − tn be the time step size,
and let Sn, In, Bn, and Rn be the approximated values of the variables Snh,
Inh, Bnh and Rnh, respectively. Thus, the NSFD scheme for the model system
(1)-(4) takes the following form

Sn+1 − Sn
φ(h)

= Λ− βe
Sn+1Bn
κ+Bn

− βhSn+1In − µSn+1,(7)

In+1 − In
φ(h)

= βe
Sn+1Bn
κ+Bn

+ βhSn+1In − (γ + µ+ u1)In+1,(8)
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Bn+1 −Bn
φ(h)

= ξIn+1 − δBn+1,(9)

Rn+1 −Rn
φ(h)

= γIn+1 − µRn+1.(10)

Let total population Nn = Sn + In + Rn, adding three equations (7), (8) and
(10), we can see that the conservation law holds:

(11)
Nn+1 −Nn

φ(h)
= Λ− µNn+1 − u1In+1 ≤ Λ− µNn+1.

Based on Micken’s work ([24]), the denominator function can be calculated

φ(h) = eµh−1
µ . Since equations (7-10) are linear in Sn+1, In+1, Bn+1 and

Rn+1, we obtain their explicit version after rearranging:

Sn+1 =
Sn + Λφ(h)

1 + φ(h)(µ+ Φ(In, Bn))
,(12)

In+1 =
In + φ(h)Sn+1Φ(In, Bn)

1 + φ(h)(γ + µ+ u1)
,(13)

Bn+1 =
Bn + ξφ(h)In+1

1 + δφ(h)
,(14)

Rn+1 =
Rn + γφ(h)In+1

1 + µφ(h)
,(15)

for the convenience of calculations, we set Φ(In, Bn) = βhIn+ βeBn
κ+Bn

. Moreover,
the following theorems can show the positivity and boundedness:

Theorem 3.1. If all the initial values and the parameter values of the discrete
system (12)-(15) are positive, then the numerical solutions are always positive
for all n ≥ 0, all denominator function φ(h).

Theorem 3.2. The NSFD scheme defines the discrete dynamical system (12)-
(15) on the following biologically feasible invariant region:

D̃ =
{

(Sn, In, Rn) |Sn ≥ 0, In ≥ 0, Rn ≥ 0, Sn + In +Rn ≤
Λ

µ
}, n = 0, 1, 2, . . .

4. Stability of the disease-free equilibrium

In order to study the convergence of the scheme (12)-(15), it is enough to
only consider equations (12)-(14). The continuous and discrete models have
the same equilibria, we first discuss the stability of proposed NSFD numerical
scheme at the disease-free equilibrium Ẽ0 = (S(0), I(0), R(0)).

First, we present the following Lemma ([7]):

Lemma 4.1 ([7]). For the quadratic equation λ2 − aλ + b, both roots satisfy
|λi| < 1, i = 1, 2, if and only if the following conditions are satisfied:

(1) f(0) = b < 1;
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(2) f(−1) = 1 + a+ b > 0;
(3) f(1) = 1− a+ b > 0.

First of all, let us consider the linearization of system (12-14) at the DFE

point Ẽ0. Let γ + µ+ u1 = Q, the Jacobian matrix for the model system is:

1
1+µφ(h)

−( Λ
µ+Λφ(h))βhφ(h)

(1+µφ(h))2

−( Λ
µ+Λφ(h))βeφ(h)

κ(1+µφ(h))2

0 1
1+Qφ(h) (1 +

( Λ
µ+Λφ(h))βhφ(h)

1+µφ(h) )
( Λ
µ+Λφ(h))βeφ(h)

κ(1+µφ(h))(1+Qφ(h))

0 ξφ(h)
1+δφ(h) [ 1

1+Qφ(h) (1 +
( Λ
µ+Λφ(h))βhφ(h)

1+µφ(h) )] 1
1+δφ(h) + ξφ(h)

1+δφ(h) [
( Λ
µ+Λφ(h))βeφ(h)

κ(1+µφ(h))(1+Qφ(h)) ]


.

The characteristic polynomial at the DFE Ẽ0 is found as:

(16) (λ− 1

1 + µφ(h)
)(λ2 − aλ+ b) = 0,

where

a =
1

1 + δφ(h)
+

ξβeφ(h)2(Λ
µ + Λφ(h))

κ(1 +Qφ(h))(1 + µφ(h))(1 + δφ(h))
+

1

1 +Qφ(h)

+
βhφ(h)(Λ

µ + Λφ(h))

(1 + µφ(h))(1 +Qφ(h))
,

b =
1

(1 +Qφ(h))(1 + δφ(h))
+

βhφ(h)(Λ
µ + Λφ(h))

(1 + µφ(h))(1 +Qφ(h))(1 + δφ(h))
.

Obviously, the first root λ1 = 1
1+µφ(h) is less than 1. Next, in order to

compute the other two eigenvalues, we define f(λ) = λ2 − aλ+ b. Among the
three conditions in Lemma 4.1, the second one is obvious since a > 0 and b > 0.
To show f(0) < 1, it is need to prove that

1 + µφ(h) + βhφ(h)(
Λ

µ
+ Λφ(h)) < (1 + φ(h))(1 + δφ(h))(1 + µφ(h)),

which is then equivalent to

Λφ(h)βh
µ

+ Λβhφ(h)2

< δφ(h) +Qφ(h) + µδφ(h)2 + µQφ(h)2 + δQφ(h)2 + µδQφ(h)3.

Meanwhile, R0 < 1 yields Λκβh < µQ. Now we use the facts that Λφ(h)βh
µ <

Qφ(h) and Λφ(h)2βh < µQφ(h)2, it is easy to calculate that f(0) < 1 holds.
For the condition (3), we note

f(1) =
δφ(h)

1 + δφ(h)
+

1

(1 + δφ(h))(1 +Qφ(h))

+
φ(h)(Λ

µ + Λφ(h))[βh − ξ φ(h)βe
κ − βh(1 + δφ(h))]

(1 + δφ(h))(1 +Qφ(h))(1 + µφ(h))
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=
δQφ(h)2

(1 + δφ(h))(1 +Qφ(h))
−

φ(h)2( 1
µ + φ(h))(Λξβe

κ + Λβhδ)

(1 + δφ(h))(1 +Qφ(h))(1 + µφ(h))

>
δQφ(h)2

(1 + δφ(h))(1 +Qφ(h))
−

φ(h)2( 1
µ + φ(h))µδQ

(1 + δφ(h))(1 +Qφ(h))(1 + µφ(h))

> 0.

Therefore, all conditions in Lemma 4.1 are satisfied if R0 < 1 and ensure the
asymptotic stability of Ẽ0.

Thus, we establish the following result:

Theorem 4.2. The disease-free equilibrium of the discrete model (12)-(14) is
locally asymptotically stable if R0 < 1 .

Next, we will analyze the global stability at the DFE of the discrete system.

Theorem 4.3. The disease-free equilibrium of the discrete model (12)-(14) is
globally asymptotically stable if R0 < 1 .

Proof. For any ε > 0, there exists an integer n0, for any n ≥ n0 such that

(17) Sn+1 ≤
Λ

µ
+ ε.

Consider the following sequence {V (n)}+∞n=0:

(18) V (n) = In +
γ + µ+ u1

ξ
Bn + φβhSn+1In + φβe

Sn+1Bn
κ+Bn

.

For any n ≥ n0, the difference of V (n) satisfies

V (n+ 1)− V (n)

= In+1 +
γ + µ+ u1

ξ
Bn+1 + φβhSn+2In+1 + φβe

Sn+2Bn+1

κ+Bn+1
− In

− γ + µ+ u1

ξ
Bn − φβhSn+1In − φβe

Sn+1Bn
κ+Bn

= φβe
Sn+1Bn
κ+Bn

+ φβhSn+1In − φ(γ + µ+ u1)In+1 + φ(γ + µ+ u1)In+1

− γ + µ+ u1

ξ
δϕBn+1 + φβhSn+2In+1 + φβe

Sn+2Bn+1

κ+Bn+1

= φβhSn+2In+1 + φβe
Sn+2Bn+1

κ+Bn+1
− γ + µ+ u1

ξ
δφBn+1

≤ φ
Λ

µ
(βhIn+1 +

βeξIn+1

δκ
)− (γ + µ+ u1)φIn+1

= φIn+1(γ + µ+ u1)(R0 − 1).

Since ε is arbitrary, for any n ≥ 0, we conclude V (n + 1) − V (n) ≤ 0 and
limn→∞ In = 0 if R0 < 1. The sequence {V (n)}+∞n=0 is a monotone decreasing
sequence, meanwhile, limn→∞ Sn = Λ

µ . This completes the proof. �
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5. Stability of the endemic equilibrium

In this section, we study the local stability of the endemic equilibrium Ẽ∗ =
(S∗, I∗, B∗, R∗) of the discrete system. After setting the right hand sides of
equations (7)-(10) equal to zero, one can find that the equilibrium points of
the NSFD scheme are the same as those obtained for the original continuous
model.

Theorem 5.1. The endemic equilibrium of the discrete model is globally
asymptotically stable if R0 > 1.

Proof. We construct a sequence {Ṽ (n)}+∞n=1 of the form,

(19) Ṽ (n) =
1

φβhI∗
g(
Sn
S∗

) +
1

φβhS∗
g(
In
I∗

) +
βe

φβhδI∗
g(
Bn
B∗

),

where the function g(x) = x− 1− lnx, x ∈ R+, clearly, g(x) ≥ 0 with equality
only if x = 1. First, we have

g(
Sn+1

S∗
)− g(

Sn
S∗

) =
Sn+1

S∗
− Sn
S∗
− ln

Sn+1

Sn

≤ Sn+1 − Sn
S∗

− Sn+1 − Sn
Sn+1

=
Sn+1 − S∗

S∗Sn+1
(Sn+1 − Sn)

=
Sn+1 − S∗

S∗Sn+1
φ(Λ− βe

Sn+1Bn
κ+Bn

− βhSn+1In − µSn+1)

=
Sn+1 − S∗

S∗Sn+1
φ(βe

S∗B∗

κ+B∗
+ βhS

∗I∗+ µS∗− βe
Sn+1Bn
κ+Bn

− βhSn+1In − µSn+1)

= − µφ(Sn+1 − S∗)2

S∗Sn+1
+ φβhI

∗(1− S∗

Sn+1
)(1− Sn+1In

S∗I∗
)

+
βeφB

∗

κ+B∗
(1− S∗

Sn+1
)(1− Sn+1Bn

κ+Bn

κ+B∗

S∗B∗
).

In the same way, we have

g(
In+1

I∗
)− g(

In
I∗

) =
In+1

I∗
− In
I∗
− ln

In+1

In

≤ In+1 − In
I∗

− In+1 − In
In+1

=
In+1 − I∗

I∗In+1
(In+1 − In)

=
In+1 − I∗

I∗In+1
φ[βe

Sn+1Bn
κ+Bn

+ βhSn+1In − (γ + µ+ u1)In+1]

=
In+1 − I∗

I∗In+1
φ[βe

Sn+1Bn
κ+Bn

+ βhSn+1In −
βeIn+1S

∗B∗

(κ+B∗)I∗
− βhIn+1S

∗]
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= φβhS
∗(1− I∗

In+1
)(
Sn+1

S∗
In
I∗
− In+1

I∗
)

+
φβe
I∗

(1− I∗

In+1
)[
Sn+1Bn
κ+Bn

− In+1S
∗B∗

(κ+B∗)I∗
].

Similarly, by letting ξI∗ = δW ∗, we obtain

g(
Bn+1

B∗
)− g(

Bn
B∗

)

=
Bn+1

B∗
− Bn
B∗
− ln

Bn+1

Bn

≤ Bn+1 −B∗

B∗Bn+1
(Bn+1 −Bn)

=
Bn+1 −B∗

B∗Bn+1
φ(ξIn+1 − δBn+1)

=
δφ

B∗
(1− B∗

Bn+1
)(
B∗

I∗
In+1 −Bn+1).

The difference of Ṽ (n) satisfies,

Ṽ (n+ 1)− Ṽ (n)

=
1

φβhI∗
[
Sn+1 − Sn

S∗
+ ln(

Sn
Sn+1

)] +
1

φβhS∗
[
In+1 − In

I∗
+ ln(

In
In+1

)]

+
βe

φβhδI∗
[
Bn+1 −Bn

B∗
+ ln(

Bn
Bn+1

)]

≤ − µ(Sn+1 − S∗)2

βhSn+1S∗I∗
+ (− S∗

Sn+1
− In+1

I∗
− Sn+1In
In+1S∗

+
In
I∗

+ 2)− βe
βhI∗

B∗

κ+B∗

(
S∗

Sn+1
+
In+1

I∗
+

I∗Sn+1Bn
In+1(κ+Bn)S∗

κ+B∗

B∗
− Bn
κ+Bn

κ+B∗

B∗
− 2)

− βe
βhI∗

B∗

κ+B∗
(
Bn+1

B∗
+
B∗In+1

Bn+1I∗
− In+1

I∗
− 1)

≤ − µ(Sn+1 − S∗)2

βhSn+1S∗I∗
− [g(

S∗

Sn+1
) + g(

Sn+1In
In+1S∗

) +
In+1

I∗
− ln

In+1

In
]

− βe
βhI∗

B∗

κ+B∗
(
S∗

Sn+1
+
In+1

I∗
+
I∗Sn+1

S∗In+1

κ+B∗

B∗
− κ+B∗

B∗
− 2)

− βe
βhI∗

B∗

κ+B∗
(
Bn+1

B∗
+
B∗In+1

Bn+1I∗
− In+1

I∗
− 1)

≤ − µ(Sn+1 − S∗)2

βhSn+1S∗I∗
− g(

S∗

Sn+1
)− g(

S∗

Sn+1
)− g(

Sn+1In
In+1S∗

)− βe
βhI∗

B∗

κ+B∗

[g(
S∗

Sn+1
) + g(

In+1Sn+1

In+1S∗
κ+B∗

B∗
) + g(

Bn+1

B∗
) + g(

B∗In+1

Bn+1I∗
)].
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Therefore, for any n ≥ 0, {Ṽ (n)} is a monotone decreasing sequence. Since

Ṽ (n) > 0, limn→∞(Ṽ (n + 1) − Ṽ (n)) = 0, we then obtain limn→ Sn+1 =
S∗, limn→∞ In+1 = I∗ as well as limn→∞Rn+1 = R∗. This completes the
proof. �

6. Numerical results

In this section, numerical simulations are proposed to exam convergence and
stability properties of the NSFD scheme.

We use the data regarding the course of the cholera in Zimbabwe for the
period from August 2008 to July 2009. The Zimbabwean cholera outbreak
not only swept to all of Zimbabwe’s ten provinces but also spread quickly to
Botswana, Mozambique, South Africa and Zambia. This epidemic has been
treated as the Africa’s worst outbreak over the last 15 years with high death
rate, killed more than 4,300 people and infected over 100,000. The total popula-
tion in Zimbabwe is 12,347,240, in order to match the hypothetical population
of N = 10, 000 in [29] and make the calculation simpler, we scale down all
data numbers by a factor of 1,200, the initial values are taken as S(0) = 9999,
I(0) = 1, B(0) = 0, and R(0) = 0 according to the data published by WHO.
All epidemiological parameter values for cholera in literature are given in Table
1. The discussions in ([14, 29]) indicated that parameters βe and βh are sensi-
tive and vary from place to place, therefore, these two parameters are modified
in the numerical simulations as βe = 0.075, βh = 0.00011 to match the real
reported infections in Zimbabwe.

To investigate the stability of the equilibria for our discrete model (11)-(14)
numerically, we perform several numerical simulations of the NSFD scheme
and compare the results with other well-known schemes such as Euler’s method
and the fourth-order Runge-Kutta (RK4) method to find out when numerical
instabilities appear for each scheme. Parameters used for this part of the simu-
lations are taken from Table 1, which give R0 > 1 and the endemic equilibrium
is (0.5135, 7848.0744, 2151.4121) by calculation. In Table 2, the spectral radius
ρ of the Jacobian of the NSFD scheme evaluated at the endemic equilibrium
point is presented and compared with that of Euler and RK4 methods from

Table 1. model parameters and values.

Parameter Symbol Value Source
the natural human death rate µ (35y)−1 [40]
the disease-related death rate u1 0.0015 [28]

recruitment rate of susceptible population Λ 4.5 Assumed
concentration of vibrios in water κ 1000000 [10,14]

the shedding rate ξ 70 [14,28]
the bacterial death rate δ (30d)−1 [14]

rate of recovery from cholera γ (5d)−1 [14]
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Table 2. Qualitative results for different schemes with differ-
ent time step sizes h when R0 > 1.

h ρ-Euler ρ-RK4 ρ-NSFD
0.01 0.9995-Convergence 0.9999-Convergence 0.9999-Convergence
0.1 0.9994-Convergence 0.9999-Convergence 0.9999-Convergence
0.5 0.9994-Convergence 0.9995-Convergence 0.9995-Convergence

1 0.9992-Convergence 0.9990-Convergence 0.9994-Convergence
2 1.3729-Divergence 0.9990-Convergence 0.9993-Convergence
5 Divergence 0.9789-Convergence 0.9893-Convergence
8 Divergence 0.9384-Convergence 0.9800-Convergence
9 Divergence 1.0034-Divergence 0.9875-Convergence

15 Divergence Divergence 0.9801-Convergence
20 Divergence Divergence 0.9729-Convergence
25 Divergence Divergence 0.9637-Convergence
30 Divergence Divergence 0.9699-Convergence

Table 3. Qualitative results of NSFD scheme for different
time step sizes h and different initial conditions when R0 > 1.

h I(0) S(0) R(0) B(0) ρ-NSFD
1 1 9999 0 0 0.9994-Convergence
1 100 9900 0 0 0.9997-Convergence
1 1000 9000 0 0 0.9996-Convergence

10 1 9999 0 0 0.9996-Convergence
10 100 9900 0 0 0.9971-Convergence
10 1000 9000 0 0 0.9970-Convergence
20 1 9999 0 0 0.9729-Convergence
20 100 9900 0 0 0.9843-Convergence
20 1000 9000 0 0 0.9772-Convergence

h = 0.01 to h = 30. It is obvious to see that the Euler method is the first to fail
for a time step size of h = 2, the RK4 behaves better for smaller h but fails when
h ≥ 21. However, scheme NSFD converges for any time step sizes in the numer-
ical simulations. Table 3 depicts the convergence property of the NSFD scheme
with several sets of initial conditions and step sizes. As it can be observed, the
spectral radius of Jacobian matrix associated to NSFD scheme evaluated at
the endemic equilibrium point are less than one all the time, which shows not
only the stability of the endemic equilibrium, but also the NSFD scheme is
more competitive in terms of numerical stability. In another case, we adjust
the key parameters βe = 0.05 and βh = 0.00005 to set R0 = 0.47, we simulate
qualitative convergence results for various time step sizes and different initial
conditions in Table 4, the results confirm our theoretical work in Section 4.
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Table 4. Qualitative results of NSFD scheme for different
time step sizes h and different initial conditions when R0 < 1.

h I(0) S(0) R(0) B(0) ρ-NSFD
1 1 9999 0 0 0.9999-Convergence
1 100 9900 0 0 0.9999-Convergence
1 1000 9000 0 0 0.9996-Convergence

10 1 9999 0 0 0.9999-Convergence
10 100 9900 0 0 0.9921-Convergence
10 1000 9000 0 0 0.9883-Convergence
20 1 9999 0 0 0.9863-Convergence
20 100 9900 0 0 0.9614-Convergence
20 1000 9000 0 0 0.9755-Convergence
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Figure 1. (a) The phase plane portrait of I vs. Time (weeks)
for R0 > 1 with h = 1, shows data fitting for the cholera
outbreak in Zimbabwe, where the curve represents the model
prediction and the points mark the reported data from WHO.
Initial conditions are I(0) = 1, S(0) = 9999, and B(0) =
R(0) = 0; (b) The phase plane portrait of I vs. Time (weeks)
for R0 < 1 with h = 1. Initial conditions are I(0) = 1, S(0) =
9999, and B(0) = R(0) = 0.

With h = 1, one can see from Fig. 1(a) that cholera outbreak increases
rapidly from the initial day and reaches the peak at t = 30 weeks with value
80 (normalized value), which fits well the real data in Zimbabwe. To predict
the cholera epidemic for a long time, we run the numerical simulation until
t = 20, 000 weeks. The first highest point 80 in Fig. 2(a) shows the 2008-2009
cholera outbreak, it then starts to gradually drop to almost zero, meaning the
disease is gradually eradicated from the population, after the first peak, several
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Figure 2. (a) The phase plane portrait of I vs. Time (weeks)
with h = 1 until t = 20, 000 weeks; (b) The phase plane por-
trait of S and R vs. Time (weeks) with h = 1 until t = 20, 000
weeks.
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Figure 3. (a) The phase plane portrait of I vs. Time (weeks)
with h = 9 until t = 20, 000 weeks. Initial conditions are
I(0) = 1, S(0) = 9999, and B(0) = R(0) = 0; (b) The phase
plane portrait of S and R vs. Time (weeks) with h = 9 until
t = 20, 000 weeks.

oscillations appear later with smaller and smaller peak values, representing
cholera will restart again and again and the total extinction of cholera after t =
20, 000 weeks. Fig. 2(b) shows almost the same trend with different magnitude
for susceptible population S and recovered population R. On the other hand,
we set the key parameters βe and βh as 0.05 and 0.00005 to make R0 < 1, as
shown in Fig. 1(b), the disease dies out quickly, so that it can be eradicated.
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Figure 4. (a) The phase plane portrait of I vs. Time (weeks)
with h = 1 until t = 20, 000 weeks. Initial conditions are
I(0) = 500, S(0) = 9500, and B(0) = R(0) = 0; (b) The
phase plane portrait of S and R vs. Time (weeks) with h = 1
until t = 20, 000 weeks. Initial conditions are I(0) = 500,
S(0) = 9500, and B(0) = R(0) = 0.
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Figure 5. (a) The phase plane portrait of I vs. Time (weeks)
for the Euler scheme with h = 1; (b) The phase plane portrait
of I vs. Time (weeks) for the RK4 scheme with h = 1.

When we take h = 9, it can be seen that all three subpopulations evolve
asymptotically to their steady states in Fig. 3, this pattern is also observed with
other time step sizes, which demonstrates the convergence of NSFD scheme
to the endemic equilibrium points is irrespective of the time step sizes. We
present numerical simulations in Fig. 4 until t = 20, 000 weeks with different
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Figure 6. (a) The phase plane portrait of I vs. Time (weeks)
for the Euler scheme with h = 2; (b) The phase plane portrait
of I vs. Time (weeks) for the RK4 scheme with h = 9.
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Figure 7. (a) The phase plane portrait of I vs. S for R0 < 1,

all these orbits converge to the disease-free equilibrium Ẽ0; (b)
The phase plane portrait of I vs. S for R0 > 1, all these orbits
converge to the endemic equilibrium Ẽ∗.

initial conditions: I(0) = 500, S(0) = 9500, and B(0) = R(0) = 0, very similar
pattern is observed.

Fig. 5(a) and (b) show how the Euler and RK4 schemes converge to their
equilibria with h = 1, respectively. However, when the step size is increased
further, Fig. 6(a) and (b) show that the Euler scheme and RK4 scheme fail to
converge using a step-size of length h = 2 and h = 9, respectively.

At last, to verify the global asymptotic stability of the NSFD scheme ana-
lyzed in Section 4 and Section 5, we pick four different initial conditions with
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I(0) = 1, 100, 500, 1000, respectively, and plot these four solution curves by the
phase plane portrait of I vs. S. It is clearly that all these four orbits converge
to the disease-free equilibrium Ẽ0 when R0 < 1 in Fig. 7(a) and converge to

endemic equilibrium Ẽ∗ when R0 > 1 in Fig. 7(b), respectively.

7. Conclusions and discussions

Until now, a lot of continuous cholera models have been formulated and an-
alyzed, nevertheless, the discrete cholera models are quite few. In the present
paper, an NSFD numerical scheme is proposed for solving mathematical cholera
model and its asymptotical behaviors are studied. The discrete system (11)-
(14) is dynamically consistent with its continuous model (1)-(4), it preserves
essential properties, such as positivity, conservation law and the boundedness of
the solution, equilibrium points as well as their stability properties. In particu-
lar, the main contribution of this paper is that we have established a complete
analysis of the global stability of the disease-free and endemic equilibria by
applying the techniques of Lyapunov functions.

At last, we applied the discrete model to study the transmission of cholera
in Zimbabwe (2008-2009). We have carried out numerical simulations and
concluded that the stability and convergence properties of the NSFD scheme are
irrespective of the time step sizes. Further, we have showed that NSFD scheme
is stable and converge to the disease-free equilibrium point for R0 < 1, and
it is also convergent to the endemic equilibrium point based on the numerical
simulation. In addition, we showed numerical advantages of the NSFD scheme
compared with Euler’s scheme and the RK4 scheme for various time step sizes.
Euler scheme and RK4 scheme diverge when h > 2 and h > 9 whereas NSFD
scheme does not. Therefore, when we study cholera, the statistic data was
collected weekly (from WHO), it is more direct and convenient to simulate the
disease better than using the continuous-time model. Furthermore, larger time
step size can be use to save the computational time and memory. In a word,
our results suggest that the NSFD scheme outperforms the traditional schemes.

It is a pity that we didn’t prove the local stability of endemic equilibrium
analytically for the case R0 > 1 because the calculation is tedious, we plan to
pursue it on a separate paper.
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