• Title/Summary/Keyword: equilibrium analysis

Search Result 2,198, Processing Time 0.028 seconds

Sensitivity Analysis of Shear Strength Parameters($C, _{\Phi}$)and Slope Angel in Slope Stability Analysis (사면 안정해석에 적용되는 지반강도정수($C, _{\Phi}$)와 사면경사 민감도 분석)

  • Baek, Yong;Bae, Gyu-Jin;Kwon, O-Il;Jang, Su-Ho;Koo, Ho-Bon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.179-184
    • /
    • 2005
  • Shear strength parameters obtained from filed survey are important factors in the analysis of slope stability. In this study, sensitivity analysis was performed to evaluate the effect of input parameters on the analysis of slope stability. The input parameters selected for sensitivity analysis were slope angle, cohesion, and friction angle. Monte-Carlo Simulation method was used for calculating input parameters and the factor of safety was computed by means of limit equilibrium method. A rock slope, which has failed in the field, was used for the sensitivity analysis in the analysis of slope stability. The result of analysis shows that the factor of safety of the rock slope was a little low. From partial correlation coefficient(PPC) of input parameters determined from the sensitivity analysis, slope stability was dependant on cohesion and slope angle. The effect of friction angle was lower than that of cohesion and slope angle on slope stability.

  • PDF

Seismic lateral earth pressure analysis of retaining walls

  • Ismeik, Muhannad;Shaqour, Fathi
    • Geomechanics and Engineering
    • /
    • v.8 no.4
    • /
    • pp.523-540
    • /
    • 2015
  • Based on limit equilibrium principles, this study presents a theoretical derivation of a new analytical formulation for estimating magnitude and lateral earth pressure distribution on a retaining wall subjected to seismic loads. The proposed solution accounts for failure wedge inclination, unit weight and friction angle of backfill soil, wall roughness, and horizontal and vertical seismic ground accelerations. The current analysis predicts a nonlinear lateral earth pressure variation along the wall with and without seismic loads. A parametric study is conducted to examine the influence of various parameters on lateral earth pressure distribution. Findings reveal that lateral earth pressure increases with the increase of horizontal ground acceleration while it decreases with the increase of vertical ground acceleration. Compared to classical theory, the position of resultant lateral earth force is located at a higher distance from wall base which in turn has a direct impact on wall stability and economy. A numerical example is presented to illustrate the computations of lateral earth pressure distribution based on the suggested analytical method.

Advanced analysis for planar steel frames with semi-rigid connections using plastic-zone method

  • Nguyen, Phu-Cuong;Kim, Seung-Eock
    • Steel and Composite Structures
    • /
    • v.21 no.5
    • /
    • pp.1121-1144
    • /
    • 2016
  • This paper presents a displacement-based finite element procedure for second-order distributed plasticity analysis of planar steel frames with semi-rigid beam-to-column connections under static loadings. A partially strain-hardening elastic-plastic beam-column element, which directly takes into account geometric nonlinearity, gradual yielding of material, and flexibility of semi-rigid connections, is proposed. The second-order effects and distributed plasticity are considered by dividing the member into several sub-elements and meshing the cross-section into several fibers. A new nonlinear solution procedure based on the combination of the Newton-Raphson equilibrium iterative algorithm and the constant work method for adjusting the incremental load factor is proposed for solving nonlinear equilibrium equations. The nonlinear inelastic behavior predicted by the proposed program compares well with previous studies. Coupling effects of three primary sources of nonlinearity, geometric imperfections, and residual stress are investigated and discussed in this paper.

Modal Analysis of Human Leg with Respect to Hip Joint Position by Using Multibody Modeling (다물체 모델링을 통한 Hip Joint 위치에 따른 인체 Leg부의 고유진동특성 분석)

  • NamGoong, Hong;Yoo, Hong-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.8
    • /
    • pp.761-766
    • /
    • 2010
  • The goal of this study is to analysis natural frequency for different static postures of human leg. To perform this research human leg is modeled by multi-body modeling for the musculoskeletal system. This leg model has biarticular muscles which acting on two joints and the muscles represents some of the major muscles, such as hamstring, of the upper and lower limbs. To obtain each static equilibrium position energy method is employed and to analysis natural frequency linearization method for constrained mechanical system is employed. Static equilibrium position depends on some parameter or condition such as hamstring stiffness or external force. Making a change these parameter the aim of this research can be performed.

A Study on the Analysis of Multi-let Spread Mooring Systems (다점지지 계류시스템의 정적해석에 대한 연구)

  • Sin, Hyeon-Gyeong;Kim, Deok-Su
    • Journal of Ocean Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.53-60
    • /
    • 1995
  • A multi-leg spread mooring system for floating offshore structures is important, but the multi-leg static analysis is complicated due to the nonlinear behavior of each line and the effect of current which affects each line differently. The pretensioned position of the multi-leg mooring system obtained from the static equilibrium condition changes into a different position due to external loads and current. In this paper, the new position and the static tension at each line are caculated. The relation between the initial static equilibrium position and the new position due to the external loads is expressed in terms of the Taylor's series expansion. The Runge-Kutta $4^{th}$ method is employed in analyzing the 3-dimensional static cable nonlinear equations.

  • PDF

Development of a Procedure to Calculate Principal Internal Forces for the Strength Design of a Forklift Truck Brake System (지게차량 제동장치 시스템 강도설계를 위한 주요 내력 계산 프로시져 개발)

  • 유홍희;박근배
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.5
    • /
    • pp.27-36
    • /
    • 1997
  • For the strength design of the brake system of a forklift truck, a procedure to calculate the internal forces acting on the system is presented in this paper. Vehicle dynamics, brake system kinematics, and internal force equilibrium analysis are integrated into the procedure. Design parameters such as stopping distance, maximum decceleration, and maximum torque generated by pedal force are considered in the vehicle dynamics, and geometric parameters of the brake system are considered in the brake system kinematics. With the two analysis results obtained, the internal forces acting in the brake system are finally calculated in the procedure.

  • PDF

Dynamic Analysis of a Pendulum Automatic Dynamic Balancer (펜들럼 자동 평형 장치의 동특성 해석)

  • Lee, Jin-Woo;Sohn, Jin-Seung;Cho, Eun-Hyoung;Park, No-Cheol;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.994-999
    • /
    • 2002
  • The Pendulum Automatic Dynamic Balancer is a device to reduce the unbalanced mass of rotors. For the analysis of dynamic stability and behavior, the nonlinear equations of motion for a system including the Pendulum Balancer are derived with respect to polar coordinate by Lagrange's equations. And the perturbation method is applied to find the equilibrium positions and to obtain the linear variation equations. Based on the linearized equations, the dynamic stability of the system around the equilibrium positions is investigated by the eigenvalue problem. Furthermore, in order to confirm the stability, the time responses for the system are computed from the nonlinear equations of motion.

  • PDF

An Analysis of the Economic effect on Free Trade Agreement between Korea and China through the Computable General Equilibrium model (일반균형분석을 통한 한.중 자유무역협정의 경제적 효과와 추진 타당성 고찰)

  • Park, Do-Joon
    • International Commerce and Information Review
    • /
    • v.9 no.1
    • /
    • pp.313-331
    • /
    • 2007
  • In a rapidly changing environment of international trade, the purpose of this study is to examine economic benefits and losses of each country involved in the negotiation on the Free Trade Agreement (FTA) in Northeast Asia and to prepare strategies for the negotiation in the FTA between Korea and China. Previous researches on FTA have been made mainly from the macroeconomic perspective. The approach in this study is a combination of regulatory, reviewing regulations, and economic making quantitative analysis of the economic effects of FTA, which are the basic background of FTA. In economic analysis, I estimated the macroscopic economic effects of FTA by examining the effects of FTA on the trade balance, GDP and production of focal countries through the Computable General Equilibrium(CGE) model using GTAP data set.

  • PDF

An Analysis of the Effect of Korea-China Free Trade Agreement on Korea's Fisheries Trade (한.중 FTA 체결 시 관세 철폐가 우리나라 수산물 교역에 미치는 영향)

  • Kim, Ki-Soo;Lee, Sang-Sook
    • The Journal of Fisheries Business Administration
    • /
    • v.43 no.2
    • /
    • pp.1-14
    • /
    • 2012
  • The main purpose of this study is to analyze the effect of Korea-China free trade agreement(FTA) on Korea's fisheries trade using the partial equilibrium analysis model of Feenstra(1995). The study tries to show the impact on trade flows and welfare of the elimination of tariffs Korea-China FTA on Korea's fisheries sector among several scenarios of trade liberalization. The results of the study indicate that the increase of fisheries export to China is lower than that of fisheries import from China. Therefore Korea-China FTA results in the decrease of domestic of fisheries production even though total welfare effect is positive. The study suggest several policy proposals for soft-landing of Korea-China FTA on Korea's fisheries sector. One of them is to lengthen the term of tariff elimination to minimize the impact on domestic fisheries sectors.

Design and Analysis of Reinforced Concrete Hyperbolic Cooling (철근콘크리트 쌍곡냉각탑의 설계 및 해석)

  • 장현옥;민창식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.501-506
    • /
    • 2000
  • An iterative numerical computational algorithm is presented to design a plate or shell element subjected to membrane and flexural forces. Based on equilibrium consideration, equations for capacities of top and bottom reinforcements in two orthogonal directions have been derived. The amount of reinforcement is determined locally, i.e., for each sampling point, from the equilibrium between applied and internal forces. Based on nonlinear analyses performed in a hyperbolic cooling tower, the analytically calculated ultimate load exceeded the design ultimate load from 50% to 55% for an analysis with relatively low to high tension stiffening, cases $\gamma$=10 and 15. For these cases, the design method gives a lower bound on the ultimate load with respect to Lower bound theorem, This shows the adequacy of th current practice at least for this cooling tower shell case studied. To generalize the conclusion more designs - analyses should be reformed with different shell configurations.

  • PDF