• 제목/요약/키워드: epoxy-nano composite

검색결과 100건 처리시간 0.027초

AC Breakdown Property of Nano-$TiO_2$ and Micro-Silica filler Mixture of Epoxy Based Composites

  • Heo, J.;Jung, E.H.;Lim, K.J.;Kang, S.H.
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.150-150
    • /
    • 2009
  • In this paper, various kinds of epoxy based nanocomposites were made and AC breakdown properties of nano-$TiO_2$ and micro-silica filler mixture of epoxy based composites were studied by sphere to sphere electrode. Moreover, nano- and micro-filler combinations were adopted as an approach toward practical application of nanocomposite insulating materials. AC breakdown test was performed at room temperature $(25^{\circ}C)$, $80^{\circ}C$ and $100^{\circ}C$. The result shows breakdown strength about non-filled, nano-scale $TiO_2$, micro-scale silica and nano-$TiO_2$, micro-silica filled epoxy composites.

  • PDF

Effect of Silica Particle Size on the Mechanical Properties in an Epoxy/Silica Composite for HV Insulation

  • Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • 제13권5호
    • /
    • pp.248-251
    • /
    • 2012
  • In order to develop a high voltage insulation material, epoxy/micro-silica composites (EMC) and epoxy/micro-silica/nano-silica composites (EMNC) with three different particle sizes in ${\mu}m$ and one particle size in nm were prepared and their tensile and flexural tests were carried out and the data was estimated by Weibull statistical analysis. The tensile strength of the neat epoxy was 82.8 MPa and those of the EMCs were larger than that of the neat epoxy, and they were much more advanced by the addition of 10 nm sized nano-silica to the EMCs. Flexural strength showed the same tendency of the tensile strength. As the micro-particle size decreased, tensile and flexural strength increased.

MgO를 첨가한 에폭시 나노 컴퍼지트의 절연파괴강도 온도의존성 (Temperature Dependence on dielectric breakdown strength of Epoxy Nano-Composites depending on MgO)

  • 정인범;한현석;이영상;조경순;신종열;홍진웅
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.48-48
    • /
    • 2010
  • In this paper, we have investigated temperature dependence of dielectric breakdown voltage at epoxy with added nano-filler(MgO), which is used as a filler of epoxy additives for HVDC(high voltage direct current) submarine cable insulating material with high thermal conductivity and restraining tree to improve electrical properties of epoxy resin in high temperature region. In order to find dispersion of the specimen, the cross sectional area of nano-composite material is observed by using the SEM(Scanning Electron Microscope) and it is conformed that each specimen is evenly distributed without the cohesion. As a result, it is confirmed that the strength of breakdown of all specimen at 50 [$^{\circ}C$] decreased more than that of the dielectric breakdown strength at room temperature. When temperature increases from 50 [$^{\circ}C$] to 100 [$^{\circ}C$], we have confirmed that breakdown strength of virgin specimen decreases, but specimens with added MgO show constant dielectric breakdown strength.

  • PDF

에폭시/마이크로실리카/나노실리카 혼합 콤포지트의 열적, 전기적 특성 (Thermal, Electrical Properties for Epoxy/Microsilica/Nanosilica Composites)

  • 강근배;권순석;박재준
    • 한국전기전자재료학회논문지
    • /
    • 제25권10호
    • /
    • pp.779-785
    • /
    • 2012
  • The epoxy/micro-and nano-mixed silica composites(EMNC) systems were prepared and the AC insulation breakdown strength was evaluated. Glass transition temperature (Tg) and crosslink density were also measured by dynamic mechanical analyzer(DMA) in order to correlate them with the electrical and mechanical properties, and the effect of silane coupling agent on the electrical properties was also studied. Electrical properties and crosslink density of epoxy/micro-silica composite were noticeably improved by addition of nano-silica and silane coupling agent, and the highest breakdown strength was obtained by addition of 0.5~5 phr of nano-silica and 2.5 phr of silane coupling agent, and the highest tensile and flexural strength were obtained by addition of 2.5 phr of nano-silica.

Effect of nano glass cenosphere filler on hybrid composite eigenfrequency responses - An FEM approach and experimental verification

  • Pandey, Harsh Kumar;Hirwani, Chetan Kumar;Sharma, Nitin;Katariya, Pankaj V.;Dewangan, Hukum Chand;Panda, Subrata Kumar
    • Advances in nano research
    • /
    • 제7권6호
    • /
    • pp.419-429
    • /
    • 2019
  • The effect of an increasing percentage of nanofiller (glass cenosphere) with Glass/Epoxy hybrid composite curved panels modeled mathematically using the multiscale concept and subsequent numerical eigenvalues of different geometrical configurations (cylindrical, spherical, elliptical, hyperboloid and flat) predicted in this research article. The numerical model of Glass/Epoxy/Cenosphere is derived using the higher-order polynomial type of kinematic theory in association with isoparametric finite element technique. The multiscale mathematical model utilized for the customized computer code for the evaluation of the frequency data. The numerical model validation and consistency verified with experimental frequency data and convergence test including the experimental elastic properties. The experimental frequencies of the multiscale nano filler-reinforced composite are recorded through the impact hammer frequency test rig including CDAQ-9178 (National Instruments) and LABVIEW virtual programming. Finally, the nano cenosphere filler percentage and different design associated geometrical parameters on the natural frequency data of hybrid composite structural configurations are illustrated through a series of numerical examples.

Epoxy/BaTiO3 (SrTiO3) composite films and pastes for high dielectric constant and low tolerance embedded capacitors fabrication in organic substrates

  • Paik Kyung-Wook;Hyun Jin-Gul;Lee Sangyong;Jang Kyung-Woon
    • 한국마이크로전자및패키징학회:학술대회논문집
    • /
    • 한국마이크로전자및패키징학회 2005년도 ISMP
    • /
    • pp.201-212
    • /
    • 2005
  • [ $Epoxy/BaTiO_3$ ] composite embedded capacitor films (ECFs) were newly designed fur high dielectric constant and low tolerance (less than ${\pm}15\%$) embedded capacitor fabrication for organic substrates. In terms of material formulation, ECFs are composed of specially formulated epoxy resin and latent curing agent, and in terms of coating process, a comma roll coating method is used for uniform film thickness in large area. Dielectric constant of $BaTiO_3\;&\;SrTiO_3$ composite ECF is measured with MIM capacitor at 100 kHz using LCR meter. Dielectric constant of $BaTiO_3$ ECF is bigger than that of $SrTiO_3$ ECF, and it is due to difference of permittivity of $BaTiO_3\;and\;SrTiO_3$ particles. Dielectric constant of $BaTiO_3\;&\;SrTiO_3$ ECF in high frequency range $(0.5\~10GHz)$ is measured using cavity resonance method. In order to estimate dielectric constant, the reflection coefficient is measured with a network analyzer. Dielectric constant is calculated by observing the frequencies of the resonant cavity modes. About both powders, calculated dielectric constants in this frequency range are about 3/4 of the dielectric constants at 1 MHz. This difference is due to the decrease of the dielectric constant of epoxy matrix. For $BaTiO_3$ ECF, there is the dielectric relaxation at $5\~9GHz$. It is due to changing of polarization mode of $BaTiO_3$ powder. In the case of $SrTiO_3$ ECF, there is no relaxation up to 10GHz. Alternative material for embedded capacitor fabrication is $epoxy/BaTiO_3$ composite embedded capacitor paste (ECP). It uses similar materials formulation like ECF and a screen printing method for film coating. The screen printing method has the advantage of forming capacitor partially in desired part. But the screen printing makes surface irregularity during mask peel-off, Surface flatness is significantly improved by adding some additives and by applying pressure during curing. As a result, dielectric layer with improved thickness uniformity is successfully demonstrated. Using $epoxy/BaTiO_3$ composite ECP, dielectric constant of 63 and specific capacitance of 5.1nF/cm2 were achieved.

  • PDF

다양한 유기계 지지체와 광촉매 Nano-ZnO 복합체를 활용한 1,1,2-trichloroethylene 제거 효율 평가 (Evaluation of 1,1,2-trichloroethylene Removal Efficiency Using Composites of Nano-ZnO Photocatalyst and Various Organic Supports)

  • 장대규;안호상;김정연;안창혁;이새로미;김종규;주진철
    • 대한환경공학회지
    • /
    • 제36권11호
    • /
    • pp.771-780
    • /
    • 2014
  • 본 연구에서는 광촉매 nano-ZnO 분말을 수질정화에 사용 후 회수 공정을 생략하기 위해 지지체에 고정화/안정화 시 발생하는 효율 저하를 유기오염물의 수착(sorption)으로 극복하고 복합체로부터 nano-ZnO의 탈리(detachment) 현상을 방지 하고자 실리콘(silicone), ABS (acrylonitrile-butadiene-styrene), 에폭시(epoxy), 부타디엔 고무(butadiene rubber)를 선정하여 nano-ZnO/Organic composites (NZOCs)를 제조하였다. 또한, 개발된 다양한 NZOCs의 수중 안정성을 규명 하고, 지하수 내 대표적인 난분해성 유기오염물인 1,1,2-trichloroethylene (TCE)를 대상으로 액상에서 제거 실험을 통해 NZOCs의 활용 타당성을 검증하였다. 연구 결과, 내수성실험을 통해 개발된 NZOCs는 수질정화 용도로 장기간 사용이 타당함을 확인하였다. 또한, FE-SEM, EDX, imaging 분석을 통해 Nano-ZnO/Butadiene rubber Composite (NZBC)는 다양한 공극과 균열에 nano-ZnO 분말이 비교적 균질하게 부착된 반면, Nano-ZnO/Silicone Composite (NZSC), Nano-ZnO/ABS Composite (NZAC), Nano-ZnO/Epoxy Composite (NZEC)는 표면에 공극과 균열이 발달되지 않아 불균질한 부착이 이뤄졌음을 확인할 수 있었다. 또한, NZBC는 초기농도 대비 60%의 TCE 수착 능을 보였는데 이는 다른 유기계 지지체와 달리 비결정성 고분자이며, TCE 분자의 소수성 분배가 활발히 발생하였기 때문으로 판단된다. 액상에서 TCE의 제거효율(수착+광분해)은 NZBC가 99% 제거 효율로 가장 우수했으며, 복합체 주입량이 증가할수록 TCE 제거효율이 크게 증가하였다. 이러한 결과는 butadiene rubber의 우수한 수착능과 nano-ZnO의 광촉매 기작이 동시에 발생하였기 때문인 것으로 판단된다. 마지막으로 액상에서 TCE 제거는 선형모델을 활용해서 비교적 잘 모사할 수 있었으며($R^2{\geq}0.936$), NZBC의 총 반응상수($K_{app}$)는 UV에 의한 TCE 분해상수($K_{photolysis}$) 대비 2.64~3.85배로 높은 값으로 확인되어 butadiene rubber가 TCE 수착 효율이 우수하며, 광분해 기작을 억제하지 않는 지지체로 활용 가능한 것으로 판단하였다.

Electrically conductive nano adhesive bonding: Futuristic approach for satellites and electromagnetic interference shielding

  • Ganesh, M. Gokul;Lavenya, K.;Kirubashini, K.A.;Ajeesh, G.;Bhowmik, Shantanu;Epaarachchi, Jayantha Ananda;Yuan, Xiaowen
    • Advances in aircraft and spacecraft science
    • /
    • 제4권6호
    • /
    • pp.729-744
    • /
    • 2017
  • This investigation highlights rationale of electrically conductive nano adhesives for its essential application for Electromagnetic Interference (EMI) Shielding in satellites and Lightning Strike Protection in aircrafts. Carbon Nano Fibres (CNF) were functionalized by electroless process using Tollen's reagent and by Plasma Enhanced Chemical Vapour Deposition (PECVD) process by depositing silver on CNF. Different weight percentage of CNF and silver coated CNF were reinforced into the epoxy resin hardener system. Scanning Electron Microscopy (SEM) micrographs clearly show the presence of CNF in the epoxy matrix, thus giving enough evidence to show that dispersion is uniform. Transmission Electron Microscopy (TEM) studies reveal that there is uniform deposition of silver on CNF resulting in significant improvement in interfacial adhesion with epoxy matrix. There is a considerable increase in thermal stability of the conductive nano adhesive demonstrated by Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA). Four probe conductivity meters clearly shows a substantial increase in the electrical conductivity of silver coated CNF-epoxy composite compared to non-coated CNF-epoxy composite. Tensile test results clearly show that there is a significant increase in the tensile strength of silver coated CNF-composites compared to non-coated CNF-epoxy composites. Consequently, this technology is highly desirable for satellites and EMI Shielding and will open a new dimension in space research.

실리카 에어로겔/고분자 복합재의 물리적 특성에 관한 연구 (A Study on Physical Characteristics of Silica Aerogel/Polymer Composite Materials)

  • 박경우;이연;윤종국;구경완
    • 전기학회논문지
    • /
    • 제62권9호
    • /
    • pp.1318-1323
    • /
    • 2013
  • Thermal insulation material was prepared by cross-linking chemical reaction of silica aerogel and epoxy resin, which has a high porous and vacant properties. The structural, mechanical, and thermal properties were analyzed in order to verify its application for industrial and electrical applications. The thermal conductivities were changed from 115 mW/mK to 75 mW/mK by reducing the contents of nano-porous silica areogel powders. The compressive loading is also decreased by increasing the contents of silica aerogels by 20 wt% in aerogel/epoxy composites. It is concluded that the formulated composite materials can be applied to building materials, electronics parts, and heavy industries.

와이블 통계를 이용한 나노컴퍼지트 파괴강도의 평가 (Estimation of Breakdown Properties in Nano-composites using Weibull Statistics)

  • 이강원;이혁진;박희두;김종환;신종열;이충호;홍진웅
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.285-286
    • /
    • 2008
  • Recently, epoxy based nano-composites are being increasingly investigated for their electrical properties, since the introduction of nano fillers demonstrate several advantages in their properties when compared with the similar properties obtained for epoxy systems with micrometer sized fillers. We calculated scale and shape parameter using dielectric strength. In this paper, it is investigated that the allowable' breakdown probability of specimens is stable at some value using Weibull statistics. Therefore we found that breakdown probability of specimens is stable until 20 [%].

  • PDF