• Title/Summary/Keyword: epoxy-anhydride system

Search Result 25, Processing Time 0.024 seconds

A Study on Cure Behavior of an Epoxy/Anhydride System and Silica Filler Effects (에폭시-산무수물 조성물의 경화거동 및 실리카 첨가에 따른 특성변화 연구)

  • Lee, Chung Hee;Kim, Kyoung-Mahn
    • Journal of Adhesion and Interface
    • /
    • v.10 no.3
    • /
    • pp.117-126
    • /
    • 2009
  • Epoxy/anhydride systems with silica filler were studied to improve the cure behavior and characteristics. To study the curing process of epoxy/anhydride using DSC and a stress rheometer, it was observed that gelation temperature increased by increasing the thermal rate or in high isothermal conditions, while it was observed that the degree of cure at gelation decreased. Thermal stability of the epoxy/anhydride system showed any increment by increasing silica contents, except slight decrease of weight by containing humidity. The epoxy resin cured with 30% of silica filler decreased coefficient thermal expansion (CTE) about 33% to show $40ppm/^{\circ}C$. Specimens filled with 30 wt% of silica showed 60% increase in storage modulus at $30^{\circ}C$ to show 3909 MPa compared with neat resin to 2,377 MPa. Epoxy/anhydride systems with surface treated silica by silane coupling agent decreased storage modulus.

  • PDF

A Study on the Curing Behavior and Toughness of Amine Terminated Polyetherimide/Epoxy Resin System (Amine Terminated Polyetherimide/에폭시 수지 시스템의 경화공정연구와 파괴인성에 관한 연구)

  • 김민영;이광기;김원호;황병선;김대식;박종만
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.147-150
    • /
    • 2002
  • The cure kinetics of blends of epoxy (DGEBA:diglycidyl ether of bisphenol A)/anhydride (NMA:nadic methyl anhydride) resin with synthesized amino terminated polyetherimide (AT-PEI) were studied using differential scanning calorimetry (DSC) and Dynamic Mechanical Analysizer(DMA) under isothermal condition to determine the reaction parameters and gel-vitrification behavior. The fracture toughness of AT-PEI 20phr/epoxy resin system was improved over 224% and 42.5% more than neat epoxy resin and commercial PEI/Epoxy Resin System.

  • PDF

Synthesis and Cure Behaviors of Diglycidylether of Bisphenol-S Epoxy Resins (Diglycidylether of Bisphenol-S 에폭시 수지의 합성 및 경화거동에 관한 연구)

  • 박수진;김범용;이재락;신재섭
    • Polymer(Korea)
    • /
    • v.26 no.4
    • /
    • pp.501-507
    • /
    • 2002
  • In this work, diglycidylether of bisphenol-S (DGEBS) epoxy resin was prepared by alkaline condensation of bisphenol-S (BPS) with epichlorohydrin (ECH) in the presence of NaOH catalyst. The structure of the synthesized DGEBS epoxy resin was confirmed by IR, NMR spectra, and elemental analysis. The curing reaction and glass transition temperature ($T_g$) of DGEBS epoxy resin cured with phthalic anhydride (PA) and tetrahydrophthalic anhydride (THPA) at curing agents were studied by dynamic differential scanning calorimetry (DSC). The thermal stability of the cured specimen was investigated by thermogravimetric analysis (TGA). As a result, the activation energy ($E_a$) of DGEBS/PA system was higher than that of DGEBS/THPA system, whereas $T_g$, initial decomposed temperature (IDT), and decomposition activation energy ($E_t$) of DGEBS/PA were lower than those of DGEBS/THPA. This was probably due to the fact that the crosslinking density of DGEBS/THPA was increased by ring strain of curing agent.

In Situ Detection of the Onset of Phase Separation and Gelation in Epoxy/Anhydride/Thermoplastic Blends

  • Choe, Young-Son;Kim, Min-Young;Kim, Won-Ho
    • Macromolecular Research
    • /
    • v.11 no.4
    • /
    • pp.267-272
    • /
    • 2003
  • The isothermal cure reactions of blends of epoxy (DGEBA, diglycidyl ether of bisphenol A)/anhydride resin with polyamide copolymer (poly(dimmer acid-co-alkyl polyamine)) or PEI were studied using differential scanning calorimetry (DSC). Rheological measurements have been made to investigate the viscosity and mechanical relaxation behavior of the blends. The reaction rate and the final cure conversion were decreased with increasing the amount of thermoplastics in the blends. Lower values of final cure conversions in the epoxy/thermoplastic blends indicate that thermoplastics hinder the cure reaction between the epoxy and the curing agent. Complete miscibility was observed in the uncured blends of epoxy/thermoplastics up to $120^{\circ}C$ but phase separations occurred in the early stages of the curing process at higher temperatures than $120^{\circ}C$. According to the rheological measurement results, a rise of G' and G" at the onset of phase separation is seen. A rise of G' and G" is not observed for neat epoxy system since no phase separation is seen during cure reaction. At the onset of phase separation the rheological behavior was influenced by the amount of thermoplastics in the epoxy/thermoplastic blends, and the onset of phase separation can be detected by rheological measurements.

Cure Monitoring of Am Epoxy-Anhydride System by Means of Fluorescence Spectroscopy (형광분석기를 이용한 에폭시-산무수물계의 경화 모니터링)

  • 조동환;김득수;이종근
    • Polymer(Korea)
    • /
    • v.25 no.2
    • /
    • pp.199-207
    • /
    • 2001
  • In the present study the cure behavior of diglycidyl ether of bisphenol-A(DGEBA) using an anhydride-based hardener in the presence of N,N-dimethyl benzyl amine (BDMA) or 1-cyanoethyl-2-ethyl-4-methyl imidazole (2E4MZ-CN) as an accelerator has been monitored and interpreted from the viewpoint of photophysical properties by means of fluorescence spectroscopy. To do this, 1,3-bis-(1-pyrene)propane (BPP) was well incorporated in the epoxy resin system by mechanical blending. The BPP probe, which is very sensitive to conformational change of the molecule influenced by the surrounding medium, successfully formed intramolecular excimer fluorescence. It is susceptible to the micro-viscosity or local viscosity and molecular mobility according to the epoxy cure. The cure behavior was explained with monomer fluorescence intensity ($I_{M}$ ), excimer fluorescence intensity ($I_{E}$ ) and $I_{M}$ /$I_{E}$ ratio as a function of cure time, cure temperature and accelerator. The present work agreed with the previous report on the cure behavior of an epoxy-anhydride system studied using DSC or torsion pendulum method. This study also suggests that the use of fluorescence technique may provide information on cure behavior of a thermosetting resin in a low temperature region, which has not been well interpreted by other analytical methods.

  • PDF

Effect of Silicone-modified Microsilica Content on Electrical and Mechanical Properties of Cycloaliphatic Epoxy/Microsilica System

  • Park, Jae-Jun;Yoon, Chan-Young;Lee, Jae-Young;Cheong, Jong-Hoon;Kang, Geun-Bae
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.3
    • /
    • pp.155-158
    • /
    • 2016
  • The effect of microsilica content modified with silicone-modified epoxy on electrical and mechanical properties of cycloaliphatic epoxy/microsilica system was investigated. The cycloaliphatic epoxy resin was diglycidyl 1,2-cyclohexanedicarboxylate and curing agent was an anhydride. Surface of microsilica was modified with silicone-modified epoxy. Electrical breakdown strength, the most important property for electrical insulation materials was tested. Tensile and flexural tests were also performed using universal testing machine (UTM). The microcomposite with 60 wt% microsilica shows maximum values in electrical breakdown strength.

Curing Kinetics of Amine Terminated Polyetherimide/Epoxy Resin Blends and Its Application on the High Toughness Composites (Amine terminated polyetherimide/Epoxy 블렌드의 경화공정과 고강인성 복합재료에의 응용)

  • 김민영;김성호;이광기;김원호;안병현
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.49-52
    • /
    • 2001
  • The investigation of cure kinetics, morphology, and fracture toughness studies on epoxy resin/amine terminated PEI/Anhydride system were performed by differential scanning calorimetry and scanning electron microscopy. Modified autocatalystic kinetics model was applied by isothermal scan test. The fracture toughness for the neat epoxy resin was 2.15 MPa m0.5 and the fracture toughness was improved 45% as neat epoxy resin system. The generation of secondary phase of AT-PEI was observed and its size was grown up by increasing contents of PEI.

  • PDF