• Title/Summary/Keyword: epoxy type resin

Search Result 180, Processing Time 0.028 seconds

Moisture Absorption Properties of Organic-Inorganic Nano Composites According to the Change of Epoxy Resins for Next Generation Semiconductor Packaging Materials (차세대 반도체용 유-무기 나노 복합재료의 에폭시 수지변화에 따른 흡습특성)

  • Kim, Whan Gun;Kim, Dong Min
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.1
    • /
    • pp.23-28
    • /
    • 2013
  • Epoxy resins are widely used in microelectronics packaging such as printed circuit board and encapsulating for semiconductor manufacturing. Water can diffuse into and through the epoxy matrix systems and moisture absorption at boarding interfaces of matrix resin systems can lead to a hydrolysis at the interfaces resulting in delamination of encapsulating materials. In the study, the changes of diffusion coefficient and moisture content ratio of epoxy resin systems with nano-sized fillers according to the change of liquid type epoxy resins were investigated. RE-304S, RE-310S, RE-810NM and HP-4032D as a epoxy resin, Kayahard AA as a hardener, and 1B2MI as a catalyst were used in these epoxy resin systems. After curing, moisture content ratios were measured with time under the 85 and 85% relative humidity condition using a thermo-hydrostat. The maximum moisture absorption ratio and diffusion coefficient of EMC decrease with the filler content. It can be seen that these decreases are due to the increase of filler surface area and the decrease of moisture through channel with the content of nano-sized filler.

Property Evaluation of Epoxy Resin based Aramid and Carbon Fiber Composite Materials (에폭시 수지 적용 아라미드 및 탄소섬유 복합재료의 물성연구)

  • Seo, Dae-Kyung;Ha, Na Ra;Lee, Jang-Hun;Park, Hyun-Gyu;Bae, Jin-Seok
    • Textile Coloration and Finishing
    • /
    • v.27 no.1
    • /
    • pp.11-17
    • /
    • 2015
  • Recently, super fiber reinforced composite materials are widely used in many industries due to high mechanical properties. In this study, 2 different types of composite materials were manufactured in order to compare their mechanical properties. Carbon and Aramid fibers were used for reinforcement materials and Bisphenol-A type epoxy resin was for matrix. Two kinds of fiber-reinforced materials were manufactured by RIM(Resin Injection Molding) method. Before manufacturing composite materials, the optimal manufacturing and curing process condition were established and the ratio of reinforcement to epoxy resin was discussed. FT-IR analysis was conducted to clarify the structure of epoxy resin. Thermal and mechanical property test were also carried out. The cross-section of composite materials was observed using a scanning electron microscope(SEM).

Curing of Epoxy Resin with Natural Cashew Nut Shell Liquids (천연 캐슈너트 외피유를 이용한 에폭시 수지의 가교)

  • Nah, Chang-Woon;Go, Jin-Hwan;Byun, Joon-Hyung;Hwang, Byung-Sun
    • Composites Research
    • /
    • v.21 no.1
    • /
    • pp.16-21
    • /
    • 2008
  • The cure behavior of epoxy resin with a conventional amide-type hardener(HD) was investigated in the presence of castor oil(CO), cashew nut shell liquid(CNSL) and CNSL-formaldehyde resin(CFR) by using a dynamic differential scanning calorimetry(DSC). The activation energy of curing reaction was also calculated based on the non-isothermal DSC thermograms at various heating rates. An one-stage curing was noted in the case of epoxy resin filled with CO, while the epoxy resin with CNSL and CFR showed a two-stage curing process. A competitive cure reaction was noted for the epoxy resin/CNSL(or CFR)/HD blends. In the absence of HD, the CFR showed lower values of curing enthalpy than that of CNSL. The activation energy of epoxy resin curing increased with increasing the CNSL and CFR loading.

Experimental Studies on the Properties of Epoxy Resin Mortars (에폭시 수지 모르터의 특성에 관한 실험적 연구)

  • 연규석;강신업
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.26 no.1
    • /
    • pp.52-72
    • /
    • 1984
  • This study was performed to obtain the basic data which can be applied to the use of epoxy resin mortars. The data was based on the properties of epoxy resin mortars depending upon various mixing ratios to compare those of cement mortar. The resin which was used at this experiment was Epi-Bis type epoxy resin which is extensively being used as concrete structures. In the case of epoxy resin mortar, mixing ratios of resin to fine aggregate were 1: 2, 1: 4, 1: 6, 1: 8, 1:10, 1 :12 and 1:14, but the ratio of cement to fine aggregate in cement mortar was 1 : 2.5. The results obtained are summarized as follows; 1.When the mixing ratio was 1: 6, the highest density was 2.01 g/cm$^3$, being lower than 2.13 g/cm$^3$ of that of cement mortar. 2.According to the water absorption and water permeability test, the watertightness was shown very high at the mixing ratios of 1: 2, 1: 4 and 1: 6. But then the mixing ratio was less than 1 : 6, the watertightness considerably decreased. By this result, it was regarded that optimum mixing ratio of epoxy resin mortar for watertight structures should be richer mixing ratio than 1: 6. 3.The hardening shrinkage was large as the mixing ratio became leaner, but the values were remarkably small as compared with cement mortar. And the influence of dryness and moisture was exerted little at richer mixing ratio than 1: 6, but its effect was obvious at the lean mixing ratio, 1: 8, 1:10,1:12 and 1:14. It was confirmed that the optimum mixing ratio for concrete structures which would be influenced by the repeated dryness and moisture should be rich mixing ratio higher than 1: 6. 4.The compressive, bending and splitting tensile strenghs were observed very high, even the value at the mixing ratio of 1:14 was higher than that of cement mortar. It showed that epoxy resin mortar especially was to have high strength in bending and splitting tensile strength. Also, the initial strength within 24 hours gave rise to high value. Thus it was clear that epoxy resin was rapid hardening material. The multiple regression equations of strength were computed depending on a function of mixing ratios and curing times. 5.The elastic moduli derived from the compressive stress-strain curve were slightly smaller than the value of cement mortar, and the toughness of epoxy resin mortar was larger than that of cement mortar. 6.The impact resistance was strong compared with cement mortar at all mixing ratios. Especially, bending impact strength by the square pillar specimens was higher than the impact resistance of flat specimens or cylinderic specimens. 7.The Brinell hardness was relatively larger than that of cement mortar, but it gradually decreased with the decline of mixing ratio, and Brinell hardness at mixing ratio of 1 :14 was much the same as cement mortar. 8.The abrasion rate of epoxy resin mortar at all mixing ratio, when Losangeles abation testing machine revolved 500 times, was very low. Even mixing ratio of 1 :14 was no more than 31.41%, which was less than critical abrasion rate 40% of coarse aggregate for cement concrete. Consequently, the abrasion rate of epoxy resin mortar was superior to cement mortar, and the relation between abrasion rate and Brinell hardness was highly significant as exponential curve. 9.The highest bond strength of epoxy resin mortar was 12.9 kg/cm$^2$ at the mixing ratio of 1:2. The failure of bonded flat steel specimens occurred on the part of epoxy resin mortar at the mixing ratio of 1: 2 and 1: 4, and that of bonded cement concrete specimens was fond on the part of combained concrete at the mixing ratio of 1 : 2 ,1: 4 and 1: 6. It was confirmed that the optimum mixing ratio for bonding of steel plate, and of cement concrete should be rich mixing ratio above 1 : 4 and 1 : 6 respectively. 10.The variations of color tone by heating began to take place at about 60˚C, and the ultimate change occurred at 120˚C. The compressive, bending and splitting tensile strengths increased with rising temperature up to 80˚ C, but these rapidly decreased when temperature was above 800 C. Accordingly, it was evident that the resistance temperature of epoxy resin mortar was about 80˚C which was generally considered lower than that of the other concrete materials. But it is likely that there is no problem in epoxy resin mortar when used for unnecessary materials of high temperature resistance. The multiple regression equations of strength were computed depending on a function of mixing ratios and heating temperatures. 11.The susceptibility to chemical attack of cement mortar was easily affected by inorganic and organic acid. and that of epoxy resin mortar with mixing ratio of 1: 4 was of great resistance. On the other hand, when mixing ratio was lower than 1 : 8 epoxy resin mortar had very poor resistance, especially being poor resistant to organicacid. Therefore, for the structures requiring chemical resistance optimum mixing of epoxy resin mortar should be rich mixing ratio higher than 1: 4.

  • PDF

A Study on Improvement of DC Breakdown Strength due to Interface Treatment Effect of Epoxy/$SiO_2$ Compund Material for Electrical installation (전기설비용 Epoxy/$SiO_2$ 복합재료의 계면처리 효과에 따른 직류 절연파괴 강도의 개선에 관한 연구)

  • 김재환;박창옥;김경환;김명호
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.6 no.2
    • /
    • pp.51-55
    • /
    • 1992
  • In this study as treating to filter silance coupling agent (KM-6030 improving coupling strength between matrix resin (bisphenole-A type epoxy resin) and filler (SiO2), breakdown strength was investigated on cases applying DC voltage to specimen. In the case on DC voltage, breakdown strength was improved bout 12.73% and 10.77% in specimen of 5[wt%] and 50[wt%] of filler content of 10 of epoxy. Therefore, it was investigate the effect that concentration of coupling agent and content of filler was influential on breakdown strength of epoxy resin.

  • PDF

Synthesis and performance assessment of modified epoxy resins containing fatty acid (지방산 변성 에폭시수지 합성과 성능평가)

  • Lee, Dong-Chan;Kim, Jin-Wook;Choi, Joong-So
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.4
    • /
    • pp.634-646
    • /
    • 2016
  • In this work, modified epoxy resins which were well melted in mild solvent were synthesized and solubility assessment was carried out for synthesized epoxy resins. Bisphenol-A type, phenol novolac type and ortho-cresol novolac type epoxy resins were used and fatty acid, dodecyl phenol (DP) and toluene diisocyanate (TDI) were added for synthesis of modified epoxy resins containing fatty acid (MEFA). Composition was epoxy resin/fatty acid = 1.0/0.5 and fatty acid/DP = 0.25/0.25 by equivalent weight and twelve MEFAs were synthesized according to epoxy resins. Viscosity and solubility were measured for twelve MEFAs. As a result, solubility of MEFA was excellent for mild solvent according to increasement of contents of benzene ring, glycidyl group and carbon number of alkyl group. And physical properties were measured for each coating of paints after preparing transparent paints of MEFA to melt well in mild solvent among twelve MEFAs. As a result, they showed an optimal performance on conditions of equivalent ratio of bisphenol-A type epoxy resin/fatty acid/DP/TDI; 1.0/0.25/0.25/0.5 and equivalent ratio of phenol novolac type epoxy resin/fatty acid/DP; 1.0/0.25/0.25 for drying time, adhesion, hardness, impact resistance and alkali resistance.

The Influence of Resin Mixture Ratio for the Use of Prepreg on the Fatigue Behavior Properties in FRMLs

  • Song, Sam-Hong;Kim, Cheol-Woong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.1
    • /
    • pp.33-41
    • /
    • 2000
  • Fiber reinforced metal laminates(FRMLs) were new type of hybrid materials. FRMLs consist of high strength metals(Al 5052-H34) and laminated fiber with structural adhesive bond. The effect of resin mixture ratios on the fatigue crack propagation behavior and mechanical properties of aramid fiber reinforced aluminum composites was investigated. The epoxy, diglycidylether of bisphenol A(DGEBA), was cured with methylene dianiline(MDA) with or without an accelerator(K-54). Eight kinds of resin mixture ratio were used for the experiment ; five kinds of FRMLs(1)(mixture of epoxy and curing agent) and three kinds of FRMLs(2)mixture of epoxy, curing agent and accelerator). The characteristic of fatigue crack propagation behavior and mechanical properties FRMLs(2) shows more effecting than that of FRMLs(1).

  • PDF

Effects of Fillers on Mixing and Mechanical Properties of Polymer Concrete (충진재가 폴리머 콘크리트의 배합과 역학적 성질에 미치는 영향)

  • 연규석;김광우;김기성;김관호
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.35 no.2
    • /
    • pp.81-91
    • /
    • 1993
  • This study was performed to evalute effects of fillers on the mixing characteristics and mechanical properties of polymer concrete. Two types of unsaturated polyester polymer and two types of epoxy resin were used as binder material, and the portland cement, a fly ash and heavy calcium carbonate were used as filler. Following conclusions were drawn from the research results. 1. Working life of polymer concrete was not affected by filler types, but affected significantly by polymer types and quantities of hardener and catalysts. 2. Without concerning polymer types, use of heavy calcuim carbonate as filler was the best in improving workability.3. The highest strength was achieved by heavy calcium carbonate in using unsaturated polyester resin and by fly ash in using epoxy resin type.4. Elastic modulus was in the range of 2.05X 10-5~2.6X 10-5gf/cm$^2$, which was approximatly 60% of that of cement concrete. Heavy calcium carbonate with unsaturated polyester resin and fly ash with epoxy resin showed relatively higher elastic modulus.

  • PDF

A study on the improvement of thermostability and dielectric breakdown strength for packaging and impregnating epoxy composite materials for electrical machines and apparatus (전기 기기용 봉지 및 함침 에폭시 복합 재료의 내열성 및 절연파괴 특성 개선에 관한 연구)

  • 김명호;김재환
    • Electrical & Electronic Materials
    • /
    • v.7 no.6
    • /
    • pp.527-533
    • /
    • 1994
  • In this study, it was studied on dielectric breakdown strength and thennostability properties due to the structure variation of matrix resin and treatment of coupling agent of epoxy insulating materials. The interpenetrating network structure was formed by simultaneous heating curing the epoxy resin with single network structure and the methacrylic acid resin. Also inner structure was observed and the glass transition temperature was measured on these three type specimens. Dielectric breakdown properties were investigated by applying DC, AC and impulse voltage. As a result, the glass transition temperature and the dielectric breakdown strength of specimen with interpenetrating network structure was more higher than another two type specimens.

  • PDF

The Effect of Silane and Dispersant on the Packing in the Composite of Epoxy and Soft Magnetic Metal Powder (실란 및 분산제가 Epoxy와 연자성 금속 파우더 복합체의 Packing에 미치는 영향)

  • Lee, Chang Hyun;Shin, Hyo Soon;Yeo, Dong Hun;Nahm, Sahn
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.12
    • /
    • pp.751-756
    • /
    • 2017
  • A molding-type power inductor is an inductor that uses a hybrid material that is prepared by mixing a ferrite metal powder coated with an insulating layer and an epoxy resin, which is injected into a coil-embedded mold and heated and cured. The fabrication of molding-type inductors requires various techniques such as for coil formation and insertion, improving the magnetic properties of soft magnetic metal powder, coating an insulating film on the magnetic powder surface, and increasing the packing density by well dispersing the powder in the epoxy resin. Among these aspects, researches on additives that can disperse the metal soft magnetic powder having the greatest performance in the epoxy resin with high charge have not been reported yet. In this study, we investigated the effect of silanes, KBM-303 and KBM-403, and a commercial dispersant on the dispersion of metal soft magnetic powders in epoxy resin. The sedimentation height and viscosity were measured, and it was confirmed that the silane KBM-303 was suitable for dispersion. For this silane, the packing density was as high as about 72.49%. Moreover, when 1.2 wt% of dispersant BYK-103 was added, the packing density was about 80.5%.