• 제목/요약/키워드: epoxy composites

검색결과 1,050건 처리시간 0.123초

전자소재 접착제용 에폭시에 두 종의 다른 당량수를 갖는 아미노 변성 실록산이 미치는 영향 (Effect of Amino Modified Siloxanes with Two Different Molecular Weights on the Properties of Epoxy Composites for Adhesives for Micro Electronics)

  • 유기환;김대흠
    • 공업화학
    • /
    • 제22권1호
    • /
    • pp.104-108
    • /
    • 2011
  • 소형 반도체 접착에 쓰이는 비전도성 고분자 접착제에서 발생하는 문제점으로는 접착소재와 칩 또는 기판 간의 열팽창계수 차이에 의한 박리, 크래킹 및 접착력 부족 등이 있다. 이러한 결점의 보완을 위하여 실리카, 나노클레이 등의 무기입자를 첨가한 고분자 복합소재를 통해 접착제의 열팽창계수를 낮추거나, 접착소재에 유연성 첨가제를 첨가하는 방법 등이 사용되고 있다. 본 연구에서는 양 말단에 아민기를 가지는 아미노 변성 실록산(AMS)을 유연제로 활용하기 위한 실험으로서, 다른 당량을 갖는 두 종류의 AMS의 함량을 1, 3, 5, 7, 9, 10 phr로 변화시켜 AMS/에폭시 복합체를 제조하였다. 그 결과, 당량이 작은 AMS인 KF-8010과 에폭시 복합체의 유리전이 온도는 148에서 $122^{\circ}C$까지, 당량이 큰 AMS인 X-22-161A와 에폭시의 복합체의 유리전이 온도는 148에서 $121^{\circ}C$까지 감소하여 AMS의 당량 변화에 대한 영향이 크지 않음을 확인하였다. KF-8010/에폭시 복합체의 모듈러스는 2648에서 2143 MPa까지 X-22-161A/에폭시 복합체는 2648에서 2015 MPa까지 감소하여 큰 당량의 AMS를 첨가한 에폭시 복합체가 적은당량의 AMS를 첨가한 에폭시 복합체보다 더 큰 폭의 모듈러스 감소율을 확인하였다.

정수압을 받는 carbon/epoxy 복합재의 변형률 속도 효과 (Effect of strain rate on the mechanical behavior of carbon/epoxy composites subjected to high pressure)

  • 이지훈;김만태;이경엽
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 추계학술대회 논문요약집
    • /
    • pp.191-191
    • /
    • 2003
  • It is well-known that the mechanical behavior of fiber-reinforced composites under hydrostatic pressure environment is different from that of atmospheric pressure environment. It is also known that the mechanical behavior of fiber-reinforced composites is affected by strain rate. In this work, we investigated the effect of strain rate on the compressional elastic modulus and fracture stress of fiber-reinforced composites under hydrostatic pressure environment. The material used in the compressional test was unidirectional carbon/epoxy composites and the hydrostatic pressures applied was 250 MPa. Compressional tests were performed applying various strain rates of 0.05 %/sec, 0.25 %/sec, 0.45 %/sec, and 0.75 %/sec. The results showed that the elastic modulus increased with increasing strain rate while the fracture stress was little affected by the strain rate.

  • PDF

하중속도가 탄소섬유/에폭시 적층복합재의 층간분리인성에 미치는 영향 (Loading rate effect on the delamination toughness of carbon/epoxy composites)

  • 하성록;이경엽;김현주;정동호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.593-597
    • /
    • 2005
  • It is generally accepted that fracture toughness of fiber-reinforced polymer composites is affected by loading rate in an atmospheric presure condition. For a present study, the loading rate effect on the fracture toughness of fiber-reinforced laminated composites in the hydrostatic pressure condition was investigated. For this purpose, fracture tests have been conducted using carbon/epoxy composites applying three steps of the strain rate at 270 MPa hydrostatic pressure condition. The loading rates applied were 0.05%/sec, 0.25%/sec, and 0.55%/sec. Fracture toughness was determined from the work factor approach as a function of applied loading rate. The result showed that fracture toughness decreased as the loading rate increased. Specifically, the fracture toughness decreased 12% as the loading rate increased from 0.05%/sec to 0.55%/sec.

  • PDF

고압환경에서 탄소섬유/에폭시 복합재의 압축거동에 대한 연구-변형률 속도 영향 (Compressive Behavior of Carbon/Epoxy Composites under High Pressure Environment-Strain Rate Effect)

  • 이지훈;이경엽
    • 한국정밀공학회지
    • /
    • 제21권4호
    • /
    • pp.148-153
    • /
    • 2004
  • It is well-known that the mechanical behavior of fiber-reinforced composites under hydrostatic pressure environment is different from that of atmospheric pressure environment. It is also known that the mechanical behavior of fiber-reinforced composites is affected by a strain rate. In this work, we investigated the effect of strain rate on the compressive elastic modulus, fracture stress, and fracture strain of carbon/epoxy composites under hydrostatic pressure environment. The material used in the compressive test was unidirectional carbon/epoxy composites and the hydrostatic pressures applied was 270㎫. Compressive tests were performed applying three strain rates of 0.05%/sec, 0.25%/sec, and 0.55%/sec. The results showed that the elastic modulus increased with increasing strain rate while the fracture stress was little affected by the strain rate. The results also showed that the fracture strain decreased with increasing strain rate.

Effect of surface treatment of graphene nanoplatelets for improvement of thermal and electrical properties of epoxy composites

  • Kim, Minjae;Kim, Yeongseon;Baeck, Sung Hyeon;Shim, Sang Eun
    • Carbon letters
    • /
    • 제16권1호
    • /
    • pp.34-40
    • /
    • 2015
  • In this study, in order to improve the thermal and electrical properties of epoxy/graphene nanoplatelets (GNPs), surface modifications of GNPs are conducted using silane coupling agents. Three silane coupling agents, i.e. 2-(3,4-epoxycyclohexyl)-ethyltrimethoxysilane (ETMOS), 3-glycidoxypropyltriethoxysilane (GPTS), and 3-glycidoxypropyltrimethoxysilane (GPTMS), were used. Among theses, GPTMS exhibits the best modification performance for fabricating GNP-incorporated epoxy composites. The effect of the silanization is evaluated using transmission electron microscopy (TEM), scanning electron microscopy, thermogravimetric analysis, and energy dispersive X-ray spectroscopy. The electrical and thermal conductivities are characterized. The epoxy/silanized GNPs exhibits higher thermal and electrical properties than the epoxy/raw GNPs due to the improved dispersion state of the GNPs in the epoxy matrix. The TEM microphotographs and Turbiscan data demonstrate that the silane molecules grafted onto the GNP surface improve the GNP dispersion in the epoxy.

Sports balls made of nanocomposite: investigating how soccer balls motion and impact

  • Ling Yang;Zhen Bai
    • Advances in nano research
    • /
    • 제16권4호
    • /
    • pp.353-363
    • /
    • 2024
  • The incorporation of nanoplatelets in composite and polymeric materials represents a recent and innovative approach, holding substantial promise for diverse property enhancements. This study focuses on the application of nanocomposites in the production of sports equipment, particularly soccer balls, aiming to bridge the gap between theoretical advancements and practical implications. Addressing the longstanding challenge of suboptimal interaction between carbon nanofillers and epoxy resin in epoxy composites, this research pioneers inventive solutions. Furthermore, the investigation extends into unexplored territory, examining the integration of glass fiber/epoxy composites with nanoparticles. The incorporation of nanomaterials, specifically expanded graphite and graphene, at a concentration of 25.0% by weight in both the epoxy structure and the composite with glass fibers demonstrates a marked increase in impact resistance compared to their nanomaterial-free counterparts. The research transcends laboratory experiments to explore the practical applications of nanocomposites in the design and production of sports equipment, with a particular emphasis on soccer balls. Analytical techniques such as infrared spectroscopy and scanning electron microscopy are employed to scrutinize the surface chemical structure and morphology of the epoxy nanocomposites. Additionally, an in-depth examination of the thermal, mechanical, viscoelastic, and conductive properties of these materials is conducted. Noteworthy findings include the efficacy of surface modification of carbon nanotubes in preventing accumulation and enhancing their distribution within the epoxy matrix. This optimization results in improved interfacial interactions, heightened thermal stability, superior mechanical properties, and enhanced electrical conductivity in the nanocomposite.

건식코팅장치를 이용하여 제조한 NH2-HNT를 충진재로 응용한 에폭시 복합체의 기계적 물성 향상 (Improvement of Mechanical Properties of Epoxy Composites Using NH2-HNT Manufactured by Dry Coating Device as Filler)

  • 김문일
    • 한국산업융합학회 논문집
    • /
    • 제27권2_2호
    • /
    • pp.371-375
    • /
    • 2024
  • Epoxy resins are widely used in various fields due to their high adhesion, mechanical strength, and solvent resistance. However, as the volume decreases during the hardening process and the cooling process after hardening, stress is generated and when an external force is applied, the brittle material exhibits destruction behavior. To complement this, research has been conducted using inorganic nanofillers such as halloysite nanotube(HNT). HNT has a nanotube structure with the chemical formula of Al2Si2O5(OH)4·nH2O and is a natural sediment of aluminosilicate. It has been used as additive to improve the mechanical properties of epoxy composites with exchange of amine group as a terminal functional group. In order to simplify complicated procedures of common wet method, a dry coating machine was designed and used for amine group exchange in previous research. In this study, they were applied as filler in epoxy composites, and mechanical properties such as tensile strength and flexural strength of composites were examined.

철도차량용 폐 복합소재에서의 탄소섬유 회수 (The Recovery of Carbon Fiber from Carbon Fiber Reinforced Epoxy Composites for Train Body)

  • 이석호;이철규;김용기;김정석;주창식
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 추계학술대회 논문집
    • /
    • pp.406-415
    • /
    • 2008
  • Recently, the amount of thermosetting plastic wastes have increased with the production of reinforced plastic composites and causes serious environmental problems. The epoxy composites, one of the versatile thermosetting plastics with excellent properties, cannot be melted down and remolded as what is done in the thermoplastic industry. In this research, a series of experiments that recovers carbon fibers from carbon fiber reinforced epoxy composites for train body was performed. We experimentally examined various decomposition processes and compared their decomposition efficiencies and mechanical property of recovered carbon fibers. For the prevention of tangle of recovered carbon fibers, each composites specimen was fixed with a Teflon supporter and no mechanical mixing was applied. Decomposition products were analyzed by scanning electron microscope (SEM), gas chromatography mass spectrometer (GC-MS), and universal testing machine (UTM). Carbon fibers could be completely recovered from decomposition process using nitric acid aqueous solution, liquid-phase thermal cracking and pyrolysis. The tensile strength losses of the recovered carbon fibers were less than 4%.

  • PDF

S-2 유리섬유 평직복합재의 기지재료 및 스티칭에 따른 충격 특성 비교 (Impact Property of S-2 Glass Woven Composites with Different Matrices and Stitching)

  • 변준형;황병선;엄문광;이정훈;남원상;송승욱;이창훈
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 추계학술발표대회 논문집
    • /
    • pp.31-34
    • /
    • 2005
  • For the damage tolerance improvement of conventional laminated composites, stitching process has been utilized for providing through-thickness reinforcements. 2D prefonl1S were stacked with S-2 glass plain weave, and 3D preforms were fabricated using the stitching process. For the matrix system, epoxy and phenol resins were considered. To examine the damage resistance performance the low velocity drop weight impact test has been carried out, and the impact damage was examined by scanning image. CAI (Compressive After Ih1paet) tests were also conducted to evaluate residual compressive strength. Compared with 2D epoxy composites, 2D phenol composites showed drastic reduction in the compressive strength prior to impact because of the higher contents of voids. The damage area of 2D phenol composites were also larger than that of 2D epoxy composites. However, by introducing the stitching, the damage area of 3D phenol composites was reduced by 60%, while the CAI strength improvement was negligible.

  • PDF

Recent Advances in Carbon-Nanotube-Based Epoxy Composites

  • Jin, Fan-Long;Park, Soo-Jin
    • Carbon letters
    • /
    • 제14권1호
    • /
    • pp.1-13
    • /
    • 2013
  • Carbon nanotubes (CNTs) are increasingly attracting scientific and industrial interest because of their outstanding characteristics, such as a high Young's modulus and tensile strength, low density, and excellent electrical and thermal properties. The incorporation of CNTs into polymer matrices greatly improves the electrical, thermal, and mechanical properties of the materials. Surface modification of CNTs can improve their processibility and dispersion within the composites. This paper aims to review the surface modification of CNTs, processing technologies, and mechanical and electrical properties of CNT-based epoxy composites.