• Title/Summary/Keyword: epoxy composite

Search Result 1,346, Processing Time 0.029 seconds

Preparation and Characterization of $CaCO_3$ Encapsulation by PMMA Core-Shell latex (PMMA와 캡슐화된 $CaCO_3$ Core-Shell 라텍스 제조와 물성연구)

  • Lim, Jong-Min;Seul, Soo-Duk
    • Elastomers and Composites
    • /
    • v.38 no.4
    • /
    • pp.303-315
    • /
    • 2003
  • Inorganic/organic composite particles were also synthesized by changing an initiator an it's concentration, concentration of an adsorbed surfactant, reaction temperature, and agitation speed in the presence of $CaCO_3$ adsorbed SDBS. The polymerization conditions were optimized according to the conversion of the core-shell composite particles. In the inorganic/organic core-shell composite particle polymerization, $CaCO_3$ absorbed surfactant SDBS of 0.5 wt % was prepared first and then core $CaCO_3$ was encapsulated by sequential emulsion polymerization using MMA, concentration of APS $3.16{\times}10^{-3}mol/L$ to minimize the formation of new PMMA particle during MMA shell polymerization. The structure characterization of the inorganic/organic core-shell particles was verified by measuring the decomposition degree of $CaCO_3$ using HCl solution. It was found that $CaCO_3$ was encapsulated by shell PMMA due to having excellent dispersion in the epoxy resin, smooth surface distinctly from spindle shape, and broad particle distribution after the capsulation.

Strain Sensing of Single Lap Shear using Pencil Lead Drawn Paper Sensor (PLDPS) (연필심을 이용한 종이센서에 의한 단일 랩 전단변형률 감지능)

  • Yoo, Ji-Hoon;Shin, Pyeong-Su;Kim, Jong-Hyun;Lee, Sang-Il;Park, Joung-Man
    • Composites Research
    • /
    • v.33 no.4
    • /
    • pp.228-233
    • /
    • 2020
  • In this paper, a single lap shear test was performed using a glass fiber reinforced composite material (GFRC). Pencil lead drawn paper sensor (PLDPS) was applied for single lap shear test being performed. Bisphenol-A epoxy and amine hardener were used as adhesives combining with composite materials. To make a difference in adhesive properties, the adhesive was cured under different conditions. PLDPS was made of a 4B pencil on A4 paper. Because graphite in a pencil was an electrically conductive substance, electric resistance (ER) could be measured. A change in ER was observed by a position where a PLDPS was attached to single lap shear specimens. It was confirmed that the change in ER was different depending on two attached positions and was observed by lap shear strain as well. In case the lap shear strain was large, the change in ER of PLDPS was high. This was because the larger the extension of the adhesive part, the larger the degree of bending of the specimen and thus the larger the distance change between two electrodes.

Multi-scale Progressive Fatigue Damage Model for Unidirectional Laminates with the Effect of Interfacial Debonding (경계면 손상을 고려한 적층복합재료에 대한 멀티스케일 피로 손상 모델)

  • Dongwon Ha;Jeong Hwan Kim;Taeri Kim;Young Sik Joo;Gun Jin Yun
    • Composites Research
    • /
    • v.36 no.1
    • /
    • pp.16-24
    • /
    • 2023
  • This paper presents a multi-scale progressive fatigue damage model incorporating the model for interfacial debonding between fibers and matrix. The micromechanics model for the progressive interface debonding was adopted, which defined the four different interface phases: (1) perfectly bonded fibers; (2) mild imperfect interface; (3) severe imperfect interface; and (4) completely debonded fibers. As the number of cycles increases, the progressive transition from the perfectly bonded state to the completely debonded fiber state occurs. Eshelby's tensor for each imperfect state is calculated by the linear spring model for a damaged interface, and effective elastic properties are obtained using the multi-phase homogenization method. The fatigue damage evolution formulas for fiber, matrix and interface were proposed to demonstrate the fatigue behavior of CFRP laminates under cyclic loading. The material parameters for the fiber/matrix fatigue damage were characterized using the chaotic firefly algorithm. The model was implemented into the UMAT subroutine of ABAQUS, and successfully validated with flat-bar UD laminate specimens ([0]8,[90]8, [30]16) of AS4/3501-6 graphite/epoxy composite.

A Study on Carbon Nano Materials as Conductive Oilers for Microwave Absorbers (전자파 흡수체를 위한 전도성 소재로서의 탄소나노소재의 특성에 대한 연구)

  • Lee, Sang-Kwan;Kim, Chun-Gon;Kim, Jin-Bong
    • Composites Research
    • /
    • v.19 no.5
    • /
    • pp.28-33
    • /
    • 2006
  • In this paper, we have studied the complex permittivities and their influence on the design of microwave absorbers of E-glass fabric/epoxy composite laminates containing three different types of carbon-based nano conductive fillers such as carbon black (CB), carbon nano fiber (CNF) and multi-wall nano tube (MWNT). The measurements were performed fur permittivities at the frequency band of 0.5 GHz$\sim$18.0 GHz using a vector network analyzer with a 7 mm coaxial air line. The experimental results show that the complex permittivities of the composites depend strongly on the natures and concentrations of the conductive fillers. The real and imaginary parts of the complex permittivities of the composites were proportional to the filler concentrations. But, depending on the types of fillers and frequency band, the increasing rates of the real and imaginary parts with respect to the filler concentrations were all different. These different rates can have an effect on the thickness in designing the single layer microwave absorbers. The effect of the different rates at 10 GHz was examined by using Cole-Cole plot; the plot is composed of a single layer absorber solution line and measured permittivities from these three types of composites. Single layer absorbers of 3 different thicknesses using carbon nano materials were fabricated and the -10 dB band of absorbing performances were all about 3 GHz.

Nondestructive Interfacial Evaluation and fiber fracture Source Location of Single-Fiber/Epoxy Composite using Micromechanical Technique and Acoustic Emission (음향방출과 미세역학적시험법을 이용한 단일섬유강화 에폭시 복합재료의 비파지적 섬유파단 위치표정 및 계면물성 평가)

  • Park, Joung-Man;Kong, Jin-Woo;Kim, Dae-Sik;Yoon, Dong-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.5
    • /
    • pp.418-428
    • /
    • 2003
  • Fiber fracture is one of the dominant failure phenomena affecting the total mechanical Performance of the composites. Fiber fracture locations were measured through the conventional optical microscope and the nondestructive acoustic emission (AE) technique and then were compared together as a function of the epoxy matrix modulus and the fiber surface treatment by the electrodeposition method (ED). Interfacial shear strength (IFSS) was measured using tensile fragmentation test in combination of AE method. ED treatment of the fiber surface enlarged the number of fiber fracture locations in comparison to the untreated case. The number of fiber fracture events measured by the AE method was less than optically obtained one. However, fiber fracture locations determined by AE detection corresponded with those by optical observation with small errors. The source location of fiber breaks by AE analysis could be a nondestructive, valuable method to measure interfacial shear strength (IFSS) of matrix in non-, semi- and/or transparent polymer composites.

Effect of Anodic Oxidation of H2SO4/HNO3 Ratio for Improving Interfacial Adhesion between Carbon Fibers and Epoxy Matrix Resins (탄소섬유와 에폭시 기지의 계면강도 증가를 위한 황산/질산 양극산화에 관한 영향)

  • Moon, Cheol-Whan;Jung, Gun;Im, Seung-Soon;Nah, Changwoon;Park, Soo-Jin
    • Polymer(Korea)
    • /
    • v.37 no.1
    • /
    • pp.61-65
    • /
    • 2013
  • In this work, the anodic oxidation of carbon fibers was carried out to enhance the mechanical interfacial properties of carbon fibers-reinforced epoxy matrix composites. The surface characteristics of the carbon fibers were studied by FTIR, X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). Also, the mechanical interfacial properties of the composites were studied with interlaminar shear strength (ILSS), critical stress intensity factor ($K_{IC}$), and critical strain energy release rate ($G_{IC}$). The anodic oxidation led to a significant change in the surface characteristics of the carbon fibers. The anodic oxidation of carbon fiber improved the mechanical interfacial properties, such as ILSS, $K_{IC}$, and $G_{IC}$ of the composites. The mechanical interfacial properties of the composites anodized at 20% sulfuric/nitric (3/1) were the highest values among the anodized carbon fibers. These results were attributed to the increase of the degree of adhesion at interfaces between the carbon fibers and the matrix resins in the composite systems.

A Study on the Processing of Anti-Corrosive Composites for Propeller Shaft of the Ship and the Evaluation of Its Static and Fatigue Properties (선박용 프로펠러축 방식처리용 복합재료의 제조와 그 정적 및 피로특성 평가에 관한 연구)

  • 김윤해;왕지석;배창원
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.23-31
    • /
    • 1998
  • Kind 1 propeller shaft in ships is the shaft which is provided with effective measures against corrosion by sea water, or the shaft which is made of approved corrosion resistance materials. The propeller shaft other than specified above is Kind 2. Thus, this study is mainly concerned with the resistance to fatigue damage in sea water against stress concentrations due to the notches. The results obtained can be summarized as follows; (1) The stress increases with curing time, however, when the curing time reaches at 96 hours the stress becomes a constant value. The elongation decreases with curing time, however, when the curing time reaches at 48 hours the elongation becomes a constant value. Thus, in case of FRP coating on propeller shaft, it is necessary to cure for 48 hours at least. (2) The relation of $\sigma$$_n$-K$_t$ is to be classified into two parts, which is a part where fracture nominal stress, $\sigma$$_n$, decreases with increasing $K_t$, and a part where $\sigma$$_n$ is nearly constant independent of $K_t$. (3) According to a linear notch mechanics, the measure of severity controlling the fracture in notched FRP body is the notch root radius, $\rho$. The notched static strength of an arbitrary specimen will be estimated from $\sigma$$_{max}$ -1/$\rho$ curve. (4) Through the observation of cross section after fatigue test, the part of interface was kept good condition irrespective of loading conditions.

  • PDF

Transient Dynamic Stress Analysis of Transversely Isotropic Cylinders Subject to Longitudinal Impact (충격압축하중을 받는 횡등방성 중실축의 과도 동적해석)

  • Oh, Guen;Sim, Woo-Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.5
    • /
    • pp.521-532
    • /
    • 2007
  • Elastic wave propagations in the semi-infinite transversely isotropic cylinder under various kinds of longitudinal impact loads are analyzed using the axisymmetric finite element method and Houbolt time-integration scheme. For which the finite element program is newly constructed and verified through the comparison of present numerical results with those by other researchers. E-type glass-epoxy composite cylinders with different fiber volume fractions are adopted and studied in detail with dynamic responses of the isotropic cylinder. Three dimensional wave motions are given in graphic form to show the realistic view of the wave propagation. Nondimensionalized dynamic characteristic variables which relate the size of finite element mesh, the time step, and the wave speed are presented for obtaining accurate and stable numerical results.

A Study on Thermal and Mechanical Interfacial Properties of Difunctional Epoxy/PMMA Blends (이관능성 에폭시/폴리메틸메타크릴레이트 블랜드의 열적 및 기계적 계면 특성)

  • 박수진;김기석;이재락;민병각;김영근
    • Composites Research
    • /
    • v.17 no.1
    • /
    • pp.10-17
    • /
    • 2004
  • In this work, the blend system prepared from epoky(DGEBA)/polymethylmethacrylate(PMMA) was investigated in thermal and mechanical interfacial property measurements. The thermal properties were carried out by DSC, DMA, and TGA measurements. Also, the surface free energy and fracture toughness were determined by contact angle and critical stress intensity factor($K_{IC}$), respectively. And the fracture surface was observed by SEM after $K_{IC}$ tests. As experimental results, the curing temperature and glass transition temperature were slightly increased in addition of PMMA. Surface free energy of the blends showed an improved value at low contents of PMMA which could be attributed to the both increasings of London dispersive and polar components. From measurement of $K_{IC}$ of the blends, the highest value was found at 5 phr. This was due to the increasing of compatibility or physical interaction in macromolecular chains between DGEBA and PMMA of the blends.

Chemo-Mechanical Analysis of Bifunctional linear DGEBF/Aromatic Amino Resin Casting Systems (DGEBF/방향족아민 경화계의 벤젠링 사이에 위치한 Methyl기와 Sulfone기가 유발하는 물성변화에 대한 연구)

  • Lee Jae-Rock;Myung In-Ho
    • Composites Research
    • /
    • v.18 no.4
    • /
    • pp.14-20
    • /
    • 2005
  • To determine the effect of chemical structure of aromatic amino curing agents on thermal and mechanical properties, standard epoxy resin DGEBF (diglycidylether of bisphenol F) was cured with diaminodiphenyl methane (DDM) and diaminodiphenyl sulphone (DDS) in a stoichiometrically equivalent ratio. From this work the effect of aromatic amino curing agents on the thermal and mechanical properties is significantly influenced by the chemical structure of curing agents. In contrast, the results show that the DGEBF/DDS system having the sulfone structure between the benzene rings had higher values in the thermal stability, density, shrinkage ($\%$), thermal expansion coefficient, tensile modulus and strength, flexural modulus and strength than the DGEBF/DDM system having methylene structure between the benzene rings, whereas the DGEBF/DDS system presented low values in maximum exothermic temperature, conversion of epoxide, and grass transition temperature. These results are caused by the relative effects of sulfone group having strong electronegativity and methylene group having (+) repulsive property. The result of fractography shows that the grain distribution of DGEBF/DDS system is more irregular than that of the DGEBF/DDM system.