• Title/Summary/Keyword: epoxy bonding

Search Result 253, Processing Time 0.028 seconds

Reflow Behavior and Board Level BGA Solder Joint Properties of Epoxy Curable No-clean SAC305 Solder Paste (에폭시 경화형 무세정 SAC305 솔더 페이스트의 리플로우 공정성과 보드레벨 BGA 솔더 접합부 특성)

  • Choi, Han;Lee, So-Jeong;Ko, Yong-Ho;Bang, Jung-Hwan;Kim, Jun-Ki
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.1
    • /
    • pp.69-74
    • /
    • 2015
  • With difficulties during the cleaning of reflow flux residues due to the decrease of the part size and interconnection pitch in the advanced electronic devices, the need for the no-clean solder paste is increasing. In this study, an epoxy curable solder paste was made with SAC305 solder powder and the curable flux of which the main ingredient is epoxy resin and its reflow solderability, flux residue corrosivity and solder joint mechanical properties was investigated with comparison to the commercial rosin type solder paste. The fillet shape of the cured product around the reflowed solder joint revealed that the curing reaction occurred following the fluxing reaction and solder joint formation. The copper plate solderability test result also revealed that the wettability of the epoxy curable solder paste was comparable to those of the commercial rosin type solder pastes. In the highly accelerated temperature and humidity test, the cured product residue of the curable solder paste showed no corrosion of copper plate. From FT-IR analysis, it was considered to be resulted from the formation of tight bond through epoxy curing reaction. Ball shear, ball pull and die shear tests revealed that the adhesive bonding was formed with the solder surface and the increase of die shear strength of about 15~40% was achieved. It was considered that the epoxy curable solder paste could contribute to the improvement of the package reliability as well as the removal of the flux residue cleaning process.

Effect of Aging treatment and Epoxy on Bonding Strength of Sn-58Bi solder and OSP-finished PCB (Sn-58Bi Solder와 OSP 표면 처리된 PCB의 접합강도에 미치는 시효처리와 에폭시의 영향)

  • Kim, Jungsoo;Myung, Woo-Ram;Jung, Seung-Boo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.4
    • /
    • pp.97-103
    • /
    • 2014
  • Among various lead-free solders, the Sn-58Bi solders have been considered as a highly promising lead-free solders because of its low melting temperature and high tensile strength. However, Sn-58Bi solder has the poor ductility. To enhance the mechanical property of Sn-58Bi solder, epoxy-enhanced Sn-58Bi solders have been studied. This study compared the microstructures and the mechanical properties of Sn-58Bi solder and Sn-58Bi epoxy solder with aging treatment. The solders ball were formed on the printed circuit board (PCB) with organic solderability preservative (OSP) surface finish, and then the joints were aged at 85, 95, 105 and $115^{\circ}C$ for up to 100, 300, 500 and 1000 hours. The shear test was conducted to evaluate the mechanical property of the solder joints. $Cu_6Sn_5$ intermetallic compound (IMC) layer grew with increasing aging time and temperature. The IMC layer for the Sn-58Bi epoxy solder was thicker than that for the Sn-58Bi solder. According to result of shear test, the shear strength of Sn-58Bi epoxy solder was higher than that of Sn-58Bi solder and the shear strength decreased with increasing aging time.

3D micro-CT analysis of void formations and push-out bonding strength of resin cements used for fiber post cementation

  • Uzun, Ismail Hakki;Malkoc, Meral Arslan;Keles, Ali;Ogreten, Ayse Tuba
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.2
    • /
    • pp.101-109
    • /
    • 2016
  • PURPOSE. To investigate the void parameters within the resin cements used for fiber post cementation by micro-CT (${\mu}CT$) and regional push-out bonding strength. MATERIALS AND METHODS. Twenty-one, single and round shaped roots were enlarged with a low-speed drill following by endodontic treatment. The roots were divided into three groups (n=7) and fiber posts were cemented with Maxcem Elite, Multilink N and Superbond C&B resin cements. Specimens were scanned using ${\mu}CT$ scanner at resolution of $13.7{\mu}m$. The number, area, and volume of voids between dentin and post were evaluated. A method of analysis based on the post segmentation was used, and coronal, middle and apical thirds considered separately. After the ${\mu}CT$ analysis, roots were embedded in epoxy resin and sectioned into 2 mm thick slices (63 sections in total). Push-out testing was performed with universal testing device at 0.5 mm/min cross-head speed. Data were analyzed with Kruskal-Wallis and Mann-Whitney U tests (${\alpha}=.05$). RESULTS. Overall, significant differences between the resin cements and the post level were observed in the void number, area, and volume (P<.05). Super-Bond C&B showed the most void formation ($44.86{\pm}22.71$). Multilink N showed the least void surface ($3.51{\pm}2.24mm^2$) and volume ($0.01{\pm}0.01mm^3$). Regional push-out bond strength of the cements was not different (P>.05). CONCLUSION. ${\mu}CT$ proved to be a powerful non-destructive 3D analysis tool for visualizing the void parameters. Multilink N had the lowest void parameters. When efficiency of all cements was evaluated, direct relationship between the post region and push-out bonding strength was not observed.

Evaluation Method for Snap Cure Behavior of Non-conductive Paste for Flip Chip Bonding (플립칩 본딩용 비전도성 접착제의 속경화거동 평가기법)

  • Min, Kyung-Eun;Lee, Jun-Sik;Lee, So-Jeong;Yi, Sung;Kim, Jun-Ki
    • Journal of Welding and Joining
    • /
    • v.33 no.5
    • /
    • pp.41-46
    • /
    • 2015
  • The snap cure NCP(non-conducive paste) adhesive material is essentially required for the high productivity flip chip bonding process. In this study, the accessibility of DEA(dielectric analysis) method for the evaluation of snap cure behavior was investigated with comparison to the isothermal DSC(differential scanning calorimetry) method. NCP adhesive was mainly formulated with epoxy resin and imidazole curing agent. Even though there were some noise in the dielectric loss factor curve measured by DEA, the cure start and completion points could be specified clearly through the data processing of cumulation and deviation method. Degree of cure by DEA method which was measured from the variation of the dielectric loss factor of adhesive material was corresponded to about 80% of the degree of cure by DSC method which was measured from the heat of curing reaction. Because the adhesive joint cured to the degree of 80% in the view point of chemical reaction reveals the sufficient mechanical strength, DEA method is expected to be used effectively in the estimation of the high speed curing behavior of snap cure type NCP adhesive material for flip chip bonding.

Design of Supramolecular Electrolytes for Solid State Dye-sensitized Solar Cells (고체형 염료감응 태양전지용 초분자 전해질 개발)

  • Koh, Jong-Kwan;Koh, Joo-Hwan;Seo, Jin-Ah;Kim, Jong-Hak
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.24-27
    • /
    • 2009
  • Solid-state dye-sensitized solar cells (DSSCs) have been constructed employing supramolecular electrolytes with multiple hydrogen bonding. A supramolecule was facilely synthesized by one-pot reaction between the amines of methyl isocytosine (MIC) and the epoxy groups of poly(ethylene glycol diglycidyl ether) (PEGDGE) to produce quadruple hydrogen bonding units. Hydrogen bonding interactions and dissolution behavior of salt in supramolecular electrolytes are investigated. The ionic conductivity of the supramolecular electrolytes with ionic liquid, i.e. 1-methyl-3-propylimidazolium iodide (MPII) reaches $8.5{\times}10^{-5}$ S/cm at room temperature, which is higher than that with metal salt (KI). A worm-like morphology is observed in the FE-SEM micrographs of $TiO_2$ nanoporous layer, due to the connection of $TiO_2$ nanoparticles resulting from adequate coating by electrolytes. DSSCs employing the supramolecular electrolytes with MPII and KI exhibit an energy conversion efficiency of 2.5 % and 0.5 %, respectively, at 100 $mW/cm^2$, indicating the importance of the cation of salt. Solar cell performances were further improved up to 3.7 % upon introduction of poly(ethylene glycol dimethyl ether) (PEGDME) with 500 g/mol.

  • PDF

Investigation on nanoadhesive bonding of plasma modified titanium for aerospace application

  • Ahmed, Sabbir;Chakrabarty, Debabrata;Mukherjee, Subroto;Joseph, Alphonsa;Jhala, Ghanshyam;Bhowmik, Shantanu
    • Advances in aircraft and spacecraft science
    • /
    • v.1 no.1
    • /
    • pp.1-14
    • /
    • 2014
  • Physico-chemical changes of the plasma modified titanium alloy [Ti-6Al-4V] surface were studied with respect to their crystallographic changes by X-Ray Diffraction (XRD) and Scanning Electron Microscope (SEM).The plasma-treatment of surface was carried out to enhance adhesion of high performance nano reinforced epoxy adhesive, a phenomenon that was manifested in subsequent experimental results. The enhancement of adhesion as a consequence of improved spreading and wetting on metal surface was studied by contact angle (sessile drop method) and surface energy determination, which shows a distinct increase in polar component of surface energy. The synergism in bond strength was established by analyzing the lap-shear strength of titanium laminate. The extent of enhancement in thermal stability of the dispersed nanosilica particles reinforced epoxy adhesive was studied by Thermo Gravimetric Analysis (TGA), which shows an increase in onset of degradation and high amount of residuals at the high temperature range under study. The fractured surfaces of the joint were examined by Scanning electron microscope (SEM).

Fracture Mechanics Analysis of Cracked Plate Repaired by Patch(II) - The Analysis of Debonding Effect - (보강재로 보수된 균열평판의 파괴역학적 해석(II)-분리 영향에 대한 연구-)

  • Jeong, Gi-Hyeon;Yang, Won-Ho;Jo, Myeong-Rae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2246-2251
    • /
    • 2000
  • Adhesive bonding repair methods has been used for a number of decades for construction of damaged structures. In order to evaluate the life of cracked aging aircraft structures, the repair technique which uses adhesively bonded boron/epoxy composite patches is being widely considered as a cost-effective and reliable method. But, this repair method contains many shortcomings. One of these shortcomings, debonding is major issue. When the adhesive shear stress increases, debonding is caused at the end of patch and plate interface. And this debonding is another defect except cracks propagation. In this paper, we assess safety at the cracked AI-plate repaired by Br/Epoxy composite patch. Firstly, from the view of fracture mechanics, reduction of stress intensity factors is determined by the variety of patch feature. Secondly, using the elastic analysis and finite element analysis, the distribution of adhesive shear stresses is acquired. Finally, The problem of how to optimize the geometric configurations of the patch has been discussed.

Thermal Characteristic of the Tubular Single tap Adhesively Bonded Joint bonded with filler containing epoxy adhesive (충전재가 함유된 단일겹치기 접착 조인트의 열적 특성에 관한 연구)

  • Kim, Jin-Kook;Lee, Dai-Gil
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.370-376
    • /
    • 2001
  • When an adhesive joint is exposed to high environmental temperature, the tensile load capability of the adhesive joint decreases because the elastic modulus and failure strength of structural adhesive decrease. The thermo-mechanical properties of structural adhesive can be improved by addition of fillers to the adhesive. In this paper, the elastic modulus and failure strength of adhesives as well as the tensile load capability of tubular single lap adhesive joints were experimentally and theoretically investigated with respect to the volume fraction of filler (alumina) and the environmental temperature. Also the tensile modulus of the fille containing epoxy adhesive was predicted using a new equation which considers filler shape, filler content and environmental temperature. The tensile load capability of the adhesive joint was predicted by using the effective strain obtained from the finite element analysis and a new failure model, from which the relation between the bonding length and the crack length was developed with respect to the volume fraction of filler.

  • PDF

Study on the Formation and the Magnetic Properties of $Sm_2Fe_{17}N_x$-type Interstitial Material

  • Kwon, H.W.
    • Journal of Magnetics
    • /
    • v.1 no.1
    • /
    • pp.19-23
    • /
    • 1996
  • In the present study, the $Sm_2Fe_{17}N_x$-type interstitial materials have been prepared by reaction between Nb-free or Nb-containing $Sm_2Fe_{17}$-type alloy and $N_2$ gas. Nitrogenation behaviour of the $Sm_2Fe_{17}N_x$-type material and disproportionation characteristics of the nitrogenated materials have been studied by means of differential thermal analysis (DTA) and thermopiezic analysis (TPA). Magnetic properties of the produced $Sm_2Fe_{17}N_x$-type interstitial materials were characterised in vibrating sample magnetometer (VSM) or thermomagnetic analyser (TMA). Epoxy-bonded or Zn-bonded $Sm_2Fe_{17}N_x$-type magnets were prepared, and their magnetic properties were investigated. It has been found that nitrogenation kinetics of the Sm2Fe17Nx-type alloy is improved significantly by the Nb-substitution for Fe in the alloy. The Nb-substitution is also found to enhance thermal stability of the $Sm_2Fe_{17}N_x$-type interstitial material. Hard magnetic properties of the interstitial materials produced from Nb-free orNb-containing alloy is high enough (intrinsic coercivity : over 7 kOe) for application as bonded permanent magnets. The good hard magnetic properties of the interstitial material are maintained in the epoxy-bonded magnet. Intrinsic coercivity of the Zn-bonded magnets is improved significantly as post-bonding annealing time increases.

  • PDF

Strengthening of reinforced concrete beams with epoxy-bonded perforated steel plates

  • Aykac, Sabahattin;Kalkan, Ilker;Uysal, Ali
    • Structural Engineering and Mechanics
    • /
    • v.44 no.6
    • /
    • pp.735-751
    • /
    • 2012
  • Although being one of the most popular strengthening techniques in reinforced concrete beams, the use of steel plates bonded to the soffit raises problems of ductility. This study aims at investigating the influence of the use of perforated steel plates instead of solid steel plates on the ductility of reinforced concrete beams. A total of nine reinforced concrete beams were tested. In addition to an unplated beam, eight beams with perforated steel plates of two different thicknesses (3 mm and 6 mm) were subjected to monotonic loading. Effect of bonding the plates to the beams with anchor bolts and with additional side plates bonded to the sides of the beam with and without anchors is also investigated. The use of bolts in addition to epoxy was found to greatly contribute to the ductility and energy absorption capacity of the beams, particularly in specimens with thick plates (6 mm) and the use side plates in addition to the bottom plate was found to be ineffective in increasing the ductility of a concrete beam unless the side plates are attached to the beam with anchors bolts. The thickness of the plate was found to have little effect on the bending rigidity of the beam.