• 제목/요약/키워드: epoxy

검색결과 3,688건 처리시간 0.026초

토기 복원용 Epoxy Putty 개발 및 물성에 관한 연구 (A study on the development and the physical properties of Epoxy Putty for earthenware restoration)

  • 배진수;정다솜;김우현;강석인;위광철
    • 보존과학회지
    • /
    • 제30권1호
    • /
    • pp.103-109
    • /
    • 2014
  • 본 연구는 토 도기 보존 처리과정에 있어서 결손부위를 복원하는 재료의 문제점과 단점 등을 보완한 재료를 개발하고자 하였다. 우선 기존 재료의 문제점으로는 높은 수축률과 낮은 접착력으로 인한 2 차 파손의 문제, 심한 황변현상으로 인한 이질감의 문제, 재료의 비가역성으로 인한 재용해의 문제 및 높은 강도로 인한 가공성의 문제, 작업 과정 중 긴 경화 시간으로 인한 처짐 현상 및 도구나 장갑에 묻어 유물의 표면을 오염시키는 문제 등이 있다. 이러한 문제점을 해결하기 위해 현재 사용되고 있는 토 도기 복원 재료들 중 Epoxy 수지를 중심으로 종류 및 물성을 파악한 후 개발 목표를 설정하였다. 개발 된 Epoxy는 5 분 내외에 경화가 이루어지는 토기 복원용 Epoxy Putty이다. 토기 복원 방법에 있어서 Epoxy Putty의 경우 페이스트(Paste) 형태로 빠르게 경화되어 작업의 편리성을 높였으며, 표면 오염 등의 단점을 보완하였다. 또한 Epoxy 원액에 백색의 Micro-balloon을 사용함으로 인해 Coloring에 용이하고 경량화하도록 하였으며, 저수축 및 가공성이 우수한 복원 재료를 개발하였다.

Epoxy 절연물의 내크랙성 향상에 관한 연구 (Study on Crack Resistance Improvement of Epoxy Insulation)

  • 하영길;김수연;이상진;김영성;박완기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 D
    • /
    • pp.1581-1583
    • /
    • 1999
  • Epoxy Compound has been used as insulation material in cable accessories. During the applying voltage to cable, heat shock is induced to accessory by the temperature difference between atmosphere and conductor. In this study, crack resistance, thermal and mechanical properties were evaluated about conventional epoxy compound and rubber toughened epoxy compound. Because rubber absorbs the stress caused by heat shock, crack resistance of rubber toughened epoxy compound is high. In the case of low thermal expansion coefficient, the compound shows high crack resistance because of low volumetric change.

  • PDF

Effect of Silica Particle Size on the Mechanical Properties in an Epoxy/Silica Composite for HV Insulation

  • Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • 제13권5호
    • /
    • pp.248-251
    • /
    • 2012
  • In order to develop a high voltage insulation material, epoxy/micro-silica composites (EMC) and epoxy/micro-silica/nano-silica composites (EMNC) with three different particle sizes in ${\mu}m$ and one particle size in nm were prepared and their tensile and flexural tests were carried out and the data was estimated by Weibull statistical analysis. The tensile strength of the neat epoxy was 82.8 MPa and those of the EMCs were larger than that of the neat epoxy, and they were much more advanced by the addition of 10 nm sized nano-silica to the EMCs. Flexural strength showed the same tendency of the tensile strength. As the micro-particle size decreased, tensile and flexural strength increased.

Evaluation of Corrosion Protection for Epoxy and Urethane Coating by EIS under Various Cyclic Corrosion Tests

  • Hyun, Jonghun;Shon, Minyoung
    • Corrosion Science and Technology
    • /
    • 제10권3호
    • /
    • pp.95-100
    • /
    • 2011
  • Protective coatings play an important role in the protection of metallic structures against corrosive environment. The main function of anticorrosive coating is to prevent the materials from corrosive agents, such as water, oxygen and ions. In the study, the corrosion protection properties of urethane and epoxy coating systems were evaluated using EIS methods exposed to the corrosion acceleration test such as Norsok M501, Prohesion and hygrothermal cyclic test. AFM analysis of the coating systems was carried out to monitor the change of roughness of coatings. Urethane coating system was more stable than the epoxy coating under given cyclic conditions. Water uptake into the urethane coatings was less than that into the epoxy coating. The urethane coating system showed better corrosion protection than epoxy coating system based on the changes of the impedance modulus at low frequency region with exposure time. Consequently, the corrosion protection properties of the epoxy and urethane coatings was well correspond with their surface roughness changes and water uptakes.

에폭시-점토 나노복합체의 제조 및 성질 (Synthesis and Properties of Epoxy-Clay Nanocomposites)

  • 이충로;인교진;공명선
    • 폴리머
    • /
    • 제27권4호
    • /
    • pp.392-395
    • /
    • 2003
  • 포스포늄 염으로 교환된 몬모릴로나이트를 alkyl triphenyl phosponium bromide과 $Na^{+}$-몬모릴로나이트로부터 제조하였다. 에폭시-점토 나노복합체는 cycloaliphtic epoxy, 산무수물 경화제 그리고 triphenyl butyl phosphonium bromide를 촉진제로 사용하여 제조하였다. TEM과 XRD 자료로부터 점토가 에폭시-몬모릴로나이트 복합체 속에 층간삽입되었음을 확인하였다. 그 밖에 기계적 성질로서 인장율과 인장 강도를 측정하였으며 그 특성을 평가하였다.

충진제와 실란처리에 따른 에폭시 복합체의 파괴시간 예측 (An Estimation of Breakdown Time of the Epoxy Composites according to Filler and Silane Treatment)

  • 신철기
    • 한국전기전자재료학회논문지
    • /
    • 제20권9호
    • /
    • pp.793-797
    • /
    • 2007
  • In this paper, the long time breakdown characteristic of the epoxy composite, which is widely used in the insulation system for high voltage application, was estimated with Weibull distribution. In the procedure of the estimation, the short time breakdown characteristics for the epoxy composite specimens, which were made with the variation of hardener and/or filler, were tested firstly. Then the long time voltage-to-time test was implemented. Finally, the long time breakdown voltage of each specimen was estimated with the parameters obtained from the statistical treatment with Weibull distribution. Base on the results, it has been found that the optimal weight ratio of epoxy resin/hardener/filler that has the excellent long time breakdown characteristic was 100/100/65. It was due to the silane treatment which relieves the electric field at the interface between filler and epoxy.

실란처리 된 MMT/에폭시 나노복합재의 인장특성 (Tensile Characteristics of Silane-modified MMT/epoxy Nanocomposites)

  • 하성록;정협재;이경엽
    • 한국정밀공학회지
    • /
    • 제23권11호
    • /
    • pp.103-107
    • /
    • 2006
  • It is well-known that the mechanical properties of MMT(montmorillonite) nanocomposites are better than those of conventional composites. In this study, tensile tests were performed to determine the effect of silane modification of MMT and its weight ratio on the tensile properties of MMT/epoxy nanocomposites. It was found that the tensile strength and the elastic modulus of MMT/epoxy nanocomposites increased with increasing weight ratio of MMT. The elastic modulus of silane-modified MMT/epoxy nanocomposites was higher than that of untreated MMT/epoxy nanocomposites, irrespective of weight ratio.

Amine Terminated Polyetherimide/에폭시 수지 시스템의 경화공정연구와 파괴인성에 관한 연구 (A Study on the Curing Behavior and Toughness of Amine Terminated Polyetherimide/Epoxy Resin System)

  • 김민영;이광기;김원호;황병선;김대식;박종만
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 춘계학술발표대회 논문집
    • /
    • pp.147-150
    • /
    • 2002
  • The cure kinetics of blends of epoxy (DGEBA:diglycidyl ether of bisphenol A)/anhydride (NMA:nadic methyl anhydride) resin with synthesized amino terminated polyetherimide (AT-PEI) were studied using differential scanning calorimetry (DSC) and Dynamic Mechanical Analysizer(DMA) under isothermal condition to determine the reaction parameters and gel-vitrification behavior. The fracture toughness of AT-PEI 20phr/epoxy resin system was improved over 224% and 42.5% more than neat epoxy resin and commercial PEI/Epoxy Resin System.

  • PDF

구리/에폭시 계의 필 접착력 분석 (Peel Strength Analyses of Copper/Epoxy System)

  • 최광성;유진;이호영
    • 한국표면공학회지
    • /
    • 제29권4호
    • /
    • pp.238-252
    • /
    • 1996
  • In order to study the effect of interface oxides on the adhesion strength of the copper/epoxy system, copper foils were immersed in black oxide or brown oxide forming solutions before lamination with epoxy prepregs, and variation of peel strength with the treatment time were investigated. Results showed that peel strength decreased rapidly up to 1 minute of treatment lime and remained constant in the case of the black oxide treated specimens, which was accompanied by the thickening of $Cu_2O$ at the Copper/Epoxy interface during the period. In contrast, peel strength increased rapidly up to 1 minute of treatment time and remained constant in the case of the brown oxide treated specimens, which could be ascribed to the thickening of CuO. Subsequent heat treatments of the Copper/Epoxy laminations at $120^{\circ}C$ in air showed that peel strength remained constant in the case of the black oxide treated specimens but decreased gradually in the case of the brown oxide treated specimens. Following XPS analyses revealed that the latter was possibly caused by the coalescence of CuO at the Copper/Epoxy interface into $Cu_2O$.

  • PDF

탄소섬유강화 복합재료의 피로강도에 미치는 모재의 영향 (Effect of matrix on fatigue strength of carbon fiber composite materials)

  • 유승원
    • 한국해양공학회지
    • /
    • 제6권1호
    • /
    • pp.113-121
    • /
    • 1992
  • In this study, the variation of fatigue strength in CF/PEEK and CF/EPOXY, the matrix and interfacial strength of which differ from each other, has been studied from the viewpoint of microfracture behavior. The results obtained are as follows; According as the fatigue strength moves from the lower cycle range to the higher cycle range, that of CF/PEEK shows higher curve than that of CF/EPOXY does. In the early stage of fatigue life, the characteristic of fatigue crack in CF/PEEK is mainly the fracture of longitudinal fiber, while that in CF/EPOXY is the fracture of transverse fiber. The difference of fatigue strength in these materials can be explained by the fracture criteria of transverse fiber and longitudinal fiber.

  • PDF