• Title/Summary/Keyword: epoxide

Search Result 348, Processing Time 0.028 seconds

Synthesis of 11-Deoxydaunomycinone and Novel 10-Fluoroanthracyclinone Derivatives

  • Rho, Young S.;최영희;김규일;신홍식;유동진;정채준;김선하
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.5
    • /
    • pp.551-555
    • /
    • 1999
  • 11-Deoxydaunomycinone 15 and 10-fluoroanthracyclinone derivatives 9, 10 were obtained. Naphthalenone 4 prepared from 2-(2,4-pentadienyl)-1,3-dioxane 2 with methyl vinyl ketone and hydrolysis with HClO4 was condensed with phthalidesulfone 5 through Michael type reaction, and was converted to 7 by epoxidation. Epoxide 7 was transformed to trione 12 using reduction-oxidation or hydrofluorination process, and then to 15 by introducing several functional groups. Compound 8 obtained in the course of the reaction of epoxide 7 and HF/ Pyr was used for the synthesis of compounds 9, 10.

Bioinformatics based Identification and Characterization of Epoxide Hydrolase of Gordonia westfalica for the Production of Chiral Epoxides (Bioinformatics를 활용한 토양미생물인 Gordonia westfalica Epoxide Hydrolase 생촉매 개발 및 Chiral Epoxides 제조 특성 분석)

  • Lee Soo Jung;Lee Eun Jung;Kim Hee Sook;Lee Eun Yeol
    • KSBB Journal
    • /
    • v.20 no.4
    • /
    • pp.311-316
    • /
    • 2005
  • Epoxide hydrolases (EHs) are versatile biocatalysts for the preparation of chiral epoxides by enantioselective hydrolysis from racemic epoxides. Various microorganisms were identified to possess a EH activity by multiple sequence alignment and analysis of conserved domain sequence from genomic and megaplasmid sequence data. We successfully isolated Gordonia westfalica possessing EH activity from various microbial strains from culture type collections. G. westfalica exhibited (R)-styrene oxide preferred enantioselective hydrolysis activity. Chiral (S)-styrene oxide with high optical purity $(>\;99\%)\;ee)$ and yield of $36.5\%$ was obtained from its racemate using whole-cell of G. westfalica.

Enantioselective Kinetic Resolution of Racemic Styrene Oxide using Recombinant Marine Fish Epoxide Hydrolase of Mugil cephalus (해양 어류 Mugil cephalus 유래의 에폭사이드 가수분해효소를 이용한 라세믹 styrene oxide의 입체선택적 분할 반응)

  • Choi, Sung Hee;Kim, Hee Sook;Lee, Eun Yeol
    • Applied Chemistry for Engineering
    • /
    • v.19 no.5
    • /
    • pp.491-496
    • /
    • 2008
  • The microsomal epoxide hydrolase gene (referred to as mMCEH) of Mugil cephalus was cloned by PCR, and then inserted to pColdI and pET-21b(+) vector, respectively. The recombinant E. coli possessing the recombinant plasmids exhibited the enantioperference toward (R)-styrene oxide. When enantioselective kinetic resolutions were conducted with 20 mM racemic styrene oxide, enantiopure (S)-styrene oxide was obtained with high enantiopurity more than 99% enantiomeric excess (ee) and 24.50% yield by using the recombinant E. coli harboring pET-21b(+)/mMCEH.

Progesterone Effects on Microsomal Epoxide Hydrolase and Glutathione S-transferease mRNA Levels in Rats (랫드 간 Epoxide Hydrolase와 Glutathione S-Transferase 유전자 발현에 미치는 Progesterone의 효과)

  • Cho, Joo-Youn;Kim, Sang-Geon
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.2
    • /
    • pp.233-241
    • /
    • 1996
  • Previous studies have shown that glucocorticoid suppresses microsomal epoxide hydrolase(EH) gene expression and that EH expression is altered during pregnancy. The effects of progesterone on the expression of rat EH and certain glutathione S-transferase(GST) genes were examined in this study. Northern RNA blot analysis revealed that progesterone was effective in increasing hepatic EH mRNA levels at 12 h to 48 h after treatment with a maximal 9-fold increase being noted at 12 h time point. Nonetheless, multiple daily treatment with progesterone rather caused minimal relative increases in EH mRNA levels. GST Ya and Yb1/2 mRNA levels were also transiently elevated at 12 h after progesterone treatment, followed by gradual decreases from the maximal Increases at day 1, 2 and 5 post-treatment. These changes in EH and GST mRNA levels were noted only at a relatively high dose of progesterone. Furthermore, immunoblot analyses showed that rats treated with progesterone for 5 days failed to show EH or GST induction, indicating that progesterone-induced alterations in EH and GST mRNA levels do not reflect bona fide induction of the detoxifying enzymes. Concomitant progesterone treatment of rats with the known EH inducers including ketoconazole and clotrimazole failed to additively nor antagonistically alter EH mRNA levels. In contrast, dexamethasone substantially reduced ketoconazole- or clotrimazole-inducible EH expression. These results showed that progesterone stimulates the EH, GST Ya and Yb1/2 gene expression at early times followed by marked reduction in the RNA levels from the maximum after multiple treatment and that the changes in mRNA do not necessarily reflect induction of the proteins.

  • PDF

Evaluation of Cytotoxicity Effects of Chalcone Epoxide Analogues as a Selective COX-II Inhibitor in the Human Liver Carcinoma Cell Line

  • Makhdoumi, Pouran;Zarghi, Afshin;Daraei, Bahram;Karimi, Gholamreza
    • Journal of Pharmacopuncture
    • /
    • v.20 no.3
    • /
    • pp.207-212
    • /
    • 2017
  • Objectives: Study of the mechanisms involved in cancer progression suggests that cyclooxygenase enzymes play an important role in the induction of inflammation, tumor formation, and metastasis of cancer cells. Thus, cyclooxygenase enzymes could be considered for cancer chemotherapy. Among these enzymes, cyclooxygenase 2 (COX-2) is associated with liver carcinogenesis. Various COX-2 inhibitors cause growth inhibition of human hepatocellular carcinoma cells, but many of them act in the COX-2 independent mechanism. Thus, the introduction of selective COX-2 inhibitors is necessary to achieve a clear result. The present study was aimed to determine the growth-inhibitory effects of new analogues of chalcone epoxide as selective COX-2 inhibitors on the human hepatocellular carcinoma (HepG2) cell line. Methods: Estimation of both cell growth and the amount of prostaglandin E2 (PGE2) production were used to study the effect of selective COX-2 inhibitors on the hepatocellular carcinoma cell. Cell growth determination has done by MTT assay in 24 h, 48 h and 72 h, and PGE2 production has estimated by using ELYSA kit in 48 h and 72 h. Results: The results showed growth inhibition of the HepG2 cell line in a concentration and time-dependent manner, as well as a reduction in the formation of PGE2 as a product of COX-2 activity. Among the compounds those analogues with methoxy and hydrogen group showed more inhibitory effect than others. Conclusion: The current in-vitro study indicates that the observed significant growth-inhibitory effect of chalcone-epoxide analogues on the HepG2 cell line may involve COX-dependent mechanisms and the PGE2 pathway parallel to the effect of celecoxib. It can be said that these analogues might be efficient compounds in chemotherapy of COX-2 dependent carcinoma specially preventing and treatment of hepatocellular carcinomas.

Enantioselective Epoxide Synthesis on the Chiral Salen Catalyst having a Transitional Metal Salt (전이금속염 함유 키랄 살렌 촉매에 의한 광학선택적 에폭사이드의 합성)

  • Guo, Xiao-Feng;Kawthekar, Rahul B.;Kim, Geon-Joong
    • Korean Chemical Engineering Research
    • /
    • v.46 no.4
    • /
    • pp.769-776
    • /
    • 2008
  • The stereoselective synthesis of chiral terminal epoxide is of immense interest due to their utility as versatile starting materials as well as chiral intermediates. In this study, new chiral Co(salen) complexes bearing cobalt(II) chloride, iron(III) chloride and zinc(II) nitrate have been synthesized and characterized. The mass and EXAFS spectra provided the direct evidence of formation of complex. Their catalytic activity and selectivity have been demonstrated for the asymmetric ring opening of terminal epoxides such as styrene oxide and phenylglycidylether by hydrolytic kinetic resolution technology and for the synthesis of glycidyl buthylate. The easily prepared complexes exhibited very high enantioselectivity for the asymmetric ring opening of epoxides with $H_2O$ nucleophile, providing enantiomerically enriched terminal epoxides (>99% ee). The newly synthesized chiral salen showed remakablely enhanced reactivity with substantially low loadings. The system described in this work is very efficient for the sinthesis of chiral epoxide and 1,2-diol intermediates.