• Title/Summary/Keyword: epigallocatechin-3-gallate (EGCG)

Search Result 149, Processing Time 0.021 seconds

Cancer Chemoprevention by Tea Polyphenols Through Modulating Signal Transduction Pathways

  • Lin, Jen-Kun
    • Archives of Pharmacal Research
    • /
    • v.25 no.5
    • /
    • pp.561-571
    • /
    • 2002
  • The action mechanisms of several chemopreventive agents derived from herbal medicine and edible plants have become attractive issues in cancer research. Tea is the most widely consumed beverage worldwide. Recently, the cancer chemopreventive actions of tea have been intensively investigated. It have been demonstrated that the active principles of tea were attributed to their tea polyphenols. Recently, tremendous progress has been made in elucidating the molecular mechanisms of cancer chemoprevention by tea and tea polyphenols. The suppression of various tumor biomarkers including growth factor receptor tyrosine kinases, cytokine receptor kinases, P13K, phosphatases, ras, raf, MAPK cascades, NㆍFB, IㆍB kinase, PKA, PKB, PKC, c-jun, c-fos, c-myc, cdks, cyclins, and related transducing proteins by tea polyphenols has been studied in our laboratory and others. The IㆍB kinase (IKK) activity in LPS-activated murine macrophages (RAW 264.7 cells) was found to be inhibited by various tea polyphenols including (-) epigallocatechin-3-gallate (EGCG), theaflavin (TF-1), theaflavin-3-gal-late (TF-2) and theaflavin-3,3'-digallate (TF-3). TF-3 inhibited IKK activity in activated macrophages more strongly than did the other tea polyphenols. TF-3 inhibited both IKK1 and IKK2 activity and prevented the degradation of IㆍBㆍand IㆍBㆍin activated macrophage cells. The results suggested that the inhibition of IKK activity by TF-3 and other tea polyphenols could occur by a direct effect on IKKs or on upstream events in the signal transduction pathway. TF-3 and other tea polyphenols blocked phosphorylation of IB from the cytosolic fraction, inhibited NFB activity and inhibited increases in inducible nitric oxide synthase levels in activated macrophage. TF-3 and other tea polyphenols also inhibited strongly the activities of xanthine oxidase, cyclooxygenase, EGF-receptor tyrosine kinase and protein kinase C. These results suggest that TF-3 and other tea polyphenols may exert their cancer chemoprevention through suppressing tumor promotion and inflammation by blocking signal transduction. The mechanisms of this inhibition may be due to the blockade of the mitogenic and differentiating signals through modulating EGFR function, MAPK cascades, NFkB activation as wll as c-myc, c-jun and c-fos expression.

Albumin and Antioxidants Inhibit Serum-deprivation-induced Cell Adhesion in Hematopoietic Cells

  • Han, Mi-Jin;Lim, Sung-Mee;Kim, Yu-Lee;Kim, Hyo-Lim;Kim, Kye-Ok;Sacket, Santosh J.;Jo, Ji-Yeong;Bae, Yoe-Sik;Okajima, Fumikazu;Im, Dong-Soon
    • Biomolecules & Therapeutics
    • /
    • v.16 no.4
    • /
    • pp.410-415
    • /
    • 2008
  • Previously, we identified albumin as an inhibitory factor in serum for cell adhesion of T cells such as human Jurkat T and primary cultured human T cells. In the present study, we found that other hematopoietic cell lines including U-937 human monocytes, THP-1 human monocytes, K-562 promyelocytic leukemia cells, and HL-60 human leukemia cells, also adhere to tissue culture flasks when serum is withdrawn, and albumin exerts an inhibitory effect on cell adhesion by those cells, implying that this inhibition is a common phenomenon in hematopoietic cells. Furthermore, we found that cell adhesion is inhibited by antioxidants such as (-)-epigallocatechin- 3-gallate (EGCG), morin, and a-tocopherol. Our results suggest that albumin may inhibit basal cell adhesion of hematopoietic cells and that the oxidative balance in the plasma may be important for cell adhesion of hematopoietic cells in vivo.

Evaluation of Whitening Activity and Wrinkle Inhibitory Effect of Ethanol Extracts of Nelumbinis Rhizomatis Nodus (우절 에탄올추출물의 미백활성능과 주름저해 효능평가)

  • Jang, Young-Ah;Yeom, Bo-Seul;Kim, Se-Gie;Lee, Jin-Tae
    • Journal of Life Science
    • /
    • v.29 no.11
    • /
    • pp.1192-1199
    • /
    • 2019
  • The intention of this study was to confirm the possible use of an ethanol extracts of Nelumbinis Rhizomatis Nodus (NRN) as a cosmetic material. To this end, we extracted NRN with 70% ethanol and performed biological activity evaluation of whitening efficacy and wrinkle reduction. We performed cellular tyrosinase inhibition and melanin contents assay to check the whitening activity of NRN and carried out a toxicity evaluation of NRN via an MTT assay and the amounts of associated proteins that affect melanin production in a melanoma cell line (B16F10). And collagenase inhibitory assay was performed for the evaluation of anti-wrinkle of samples. In addition, a toxicity evaluation using an MTT assay and matrix metalloprotease (MMP-1) and procollagen synthesis inhibition by NRN were evaluated in a fibroblast cell line (CCD-986sk). Western blot results for the whitening activity evaluation revealed that the levels of two proteins related to melanin production, tyrosinase-related protein-1 (TRP-1) and tyrosinase-related protein-2 (TRP-2), were decreased in a dose-dependent manner. Moreover, collagenase inhibition activity at a concentration of $500{\mu}g/ml$ NRN by measuring epigallocatechin-3-gallate (EGCG) was increased by more than 80% compared to the control group. Meanwhile, procollagen synthesis was reduced by 68.8% in the UVB-induced CCD- 986sk cells group whereas collagen synthesis recovered by 80.2% with $25{\mu}g/ml$ NRN. The MMP-1 expression rate showed 20.2% reduction at $25{\mu}g/ml$. The results of the experiments verified the whitening and wrinkle suppression effects of NRN and confirmed that it could be used as a safe natural cosmetic material in the future.

Comparative Analysis of Catechins and Antioxidant Capacity in Various Grades of Organic Green Teas Grown in Boseong, Korea (보성산 유기농 녹차의 품질에 따른 카테킨 함량과 항산화능 비교 분석)

  • Park, Kyung-Ryun;Lee, Sang-Gil;Nam, Tae-Gyu;Kim, Young-Jun;Kim, Young-Rok;Kim, Dae-Ok
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.1
    • /
    • pp.82-86
    • /
    • 2009
  • The objective of this study was to evaluate the effect of various solvents on extraction of bioactive phenolics and to analyze the antioxidant capacity and contents of individual catechins in various grades of green teas organically grown in Boseong, Korea. The organic green teas, based on their harvest seasons, were categorized into five grades such as Woo-Jeon, Se-Jak, Jung-Jak, Dae-Jak, and coarse tea. Solvents used to extract phenolics from these teas included water at $23^{\circ}C$ and $70^{\circ}C$ as well as 80% (v/v) aqueous methanol and ethanol. In general, aqueous organic solvents of methanol and ethanol led to higher extraction yields of phenolics than water at $23^{\circ}C$ and $70^{\circ}C$. Total phenolics and antioxidant capacity of the teas extracted with the aqueous organic solvents were approximately 1.5 to 3.2 and 1.8 to 3.8 times higher than those with water at $23^{\circ}C$ and $70^{\circ}C$, respectively. Coarse tea, the lowest grade of green tea, showed approximately 30-60% lower total phenolics and antioxidant capacity compared with the higher grade ones. Reversed-phase HPLC analysis was performed quantitatively to identify individual catechins, gallic acid, and caffeine in teas extracted with 80% (v/v) aqueous methanol. Based on their dry weights, the organic green teas contained about 1.7 to 2.9% of caffeine. Content (mg/g dry weight) of tea catechins decreased in the following order: Woo-Jeon (155.4) > Se-Jak (147.7) > Jung-Jak (143.2) > coarse tea (135.1) > Dae-Jak (130.5). (-)-Epigallocatechin gallate was the most abundant among the catechins analyzed. The highest grade of green tea, Woo-Jeon, had the highest amount of (-)-epigallocatechin gallate at 77.4 mg/g dry weight. Overall, the higher grade of organic green teas tended to have the higher level of antioxidant capacity and catechins.

Quality Properties of Appenzeller Cheese Containing Green Tea Powder (녹차 첨가 아펜젤러 치즈의 품질 특성)

  • Choi, Hee-Young;Choi, Hyo-Ju;Yang, Chul-Ju;Lee, Sang-Suk;Choi, Gap-Sung;Park, Jeong-Ro;Chun, Sun-Sil;Shin, Hyon-Jung;Jeong, Seok-Geun;Bae, In-Hyu
    • Journal of Dairy Science and Biotechnology
    • /
    • v.27 no.2
    • /
    • pp.7-16
    • /
    • 2009
  • Appenzeller cheese samples were prepared by addition of 0.5, 1.0, and 2.0% green tea (Camellia sinensis, CS) powder and control cheese. We examined various quality characteristics of the novel cheese, such as viable-cell counts, pH, water-soluble nitrogen (WSN), non-casein nitrogen (NCN), non-protein nitrogen (NPN), and catechin level during maturation for 16 weeks at $14^{\circ}C$. To develop a Korean natural cheese containing green tea powder, we also analyzed the changes in the polyacrylamide gel electrophoresis pattern, chemical composition, and sensory qualities. The viable cell counts of the samples were not significantly different. Until the $3^{rd}$ week, the pH of the CS cheese decreased with an increase in the maturation time. However, the pH gradually increased by the $12^{th}$ week, while WSN, NCN, NPN also increased. The WSN, NCN, NPN, and catechin values for the CS cheese samples were significantly higher than the values for the control cheese. The polyacrylamide gel electrophoretic pattern of caseins for the CS cheese indicated that this cheese degraded more rapidly than the control cheese did. In the sensory evaluation, cheese with 1.0% CS powder showed the highest scores in taste and appearance and good scores in flavor and texture. These results indicate that 1.0% CS is the optimal value for addition to cheese, and cheese containing 1.0% CS shows good physiological properties and reasonably high overall sensory acceptability.

  • PDF

Factors Affecting Reactivity of Various Phenolic Compounds with the Folin-Ciocalteu Reagent (다양한 페놀성 물질과 Folin-Ciocalteu 시약의 반응성에 미치는 영향 요인 평가)

  • Hong, Jung-Il;Kim, Hyun-Jung;Kim, Ji-Yun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.2
    • /
    • pp.205-213
    • /
    • 2011
  • The Folin-Ciocalteu (F-C) reagent has been extensively used for quantifying total phenolic contents in many different types of food materials. Since several different procedures of the assay methods using the F-C reagent have been applied, we investigated changes in reactivity of various phenolic compounds with the F-C reagent under three different assay conditions and factors affecting reactivity. Among 10 standard compounds tested, compounds with high hydroxyl density (number of -OH/molecular weight) showed a largely different response according to addition sequence of the F-C reagent or $Na_2CO_3$. Preincubation in $Na_2CO_3$ significantly reduced the reactivity of the phenolic compounds bearing galloyl moiety (e.g. gallic acid, tannic acid, and epigallocatechin-3-gallate) with the F-C reagent, while monophenol compounds including ferulic acid and sinapinic acid were more stable as compared to diphenols. There was little change in response to the F-C reagent of all phenolic compounds incubated in acidic pH; their reactivity except ferulic acid was reduced significantly when incubated in neutral or alkaline pH. Changes in reactivity of gallic acid incubated in $Na_2CO_3$ or neutral/alkaline pH conditions were the most prominent. $H_2O_2$ generated from phenolic compounds did not affect the reaction with the F-C reagents. The present results suggest that reactivity of different phenolic compounds with F-C reagent was affected considerably by different procedures of the assay, and the total phenolic contents could be fluctuated according to standard compounds and assay scheme.

In vitro Biological Activities of Anthocyanin Crude Extracts from Black Soybean (In vitro 실험에서 검정콩 안토시아닌 조추출물의 효능 분석)

  • Lee, Hye-Jeong;Do, Wan-Nyeo;Kim, Yong-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.55 no.1
    • /
    • pp.65-69
    • /
    • 2010
  • This study was carried out to investigate the antioxidative and anti-inflammatory activity of crude anthocyanin compounds extracted from black soybean. The crude anthocyanin compounds were extracted with 80% methanol and concentrated to powder. The most abundant compound isolated from the extract was C3G(cyanidin-3-glucoside). The superoxide dismutase (SOD) assay was conducted to assess the antioxidative activity of the crude extract. SOD, which catalyzes the dismutation of the superoxide anion into hydrogen peroxide and molecular oxygen, is one of the most important antioxidative enzymes. The black soybean anthocyanin extracts inhibited more than 90% of the superoxide radical at a concentration of 0.1% and 100% at a concentration of 0.5%, indicating that this extract displayed excellent antioxidative activity. To assess the anti-inflammatory activity of the extract, a NO(Nitric oxide) production assay in RAW 264.7 cells was performed. NO is an important physiological messenger and effector molecule in many biological systems, including immunological, neuronal and cardiovascular tissues. In this assay, the anthocyanin extracts showed a high anti-inflammatory potential, where the inhibitory potency for NO production was similar to the positive control, particularly for EGCG(epigallocatechin-3-gallate), which is known to have excellent anti-inflammatory activity. Thus, it can be concluded that the anthocyanin extracts from black soybean have distinctive pharmaceutical activities and may be used as an excellent source materials to supplement the health benefits of various food products.

Variation of Growth Characteristics and Quality Related Components in Korean Indigenous Tea (Camellia sinensis) Germplasms (한국 재래종 차나무(Camellia sinensis)의 작물학적 특성 및 품질관련 성분 변이)

  • Lee, Min-Seuk;Lee, Jin-Ho;Lee, Jeong-Dae;Hyun, Jin-Wuk;Kim, Young-Gul;Hwang, Young-Sun;Lee, Hyeon-Jin;Choi, Su-San-Na;Lee, Su-Jin;Choung, Myoung-Gun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.53 no.3
    • /
    • pp.333-338
    • /
    • 2008
  • The tea has traditionally been used as a foodstuff by unique flavor, however recently not only the diversity of consumer demands but also the public interest in unique favorite and functional aspects have increased. It has been also reported that the main components contained in the leaves of tea (Camellia sinensis) include total nitrogen, free amino acids, polyphenols, and fiber, of which catechin has powerful bioactive effect such as anti-cancer, anti-aging, and anti-diabetic. (-)-Epigallocatechin gallate (EGCG) which is a major phenolic constituent of green tea extract has received considerable attention for a variety of important bioactivities. This study was carried out to obtain useful information for tea breeding programs, and to investigate the concentration of quality and functional related components in Korean indigenous tea germplasms. Korean indigenous tea lines were classified into three groups of sprout time, i.e, early, medium and late sprout time, and the ratio were 20%, 43% and 37%, respectively. There was a difference in characteristics among these Korean indigenous tea lines, leaf width of those ranged from 19.8 to 75 mm, leaf length was 35.5-160.0 mm, and leaf area was $660-8,400\;mm^2$. Experimental data on chlorophyll content (SPAD value) of Korean indigenous tea genetic resources ranged from 51.3 to 82.3. The concentrations of the total nitrogen, total free amino acids, and theanine were ranged 4.18-6.07%, 2.87-4.58%, and 1.64-2.66%, respectively. Also, catechin concentration showed from 11.54 to 15.07%, and concentration of caffeine was 2.82-4.23%. These results indicated indicated that it is possible to select elite lines with high concentration of quality related components and low concentration of caffeine from Korean domestic tea germplasms.

Induction of Phase I, II and III Drug Metabolism/Transport by Xenobiotics

  • Xu Chang Jiang;Li Christina YongTao;Kong AhNg Tony
    • Archives of Pharmacal Research
    • /
    • v.28 no.3
    • /
    • pp.249-268
    • /
    • 2005
  • Drug metabolizing enzymes (DMEs) play central roles in the metabolism, elimination and detoxification of xenobiotics and drugs introduced into the human body. Most of the tissues and organs in our body are well equipped with diverse and various DMEs including phase I, phase II metabolizing enzymes and phase III transporters, which are present in abundance either at the basal unstimulated level, and/or are inducible at elevated level after exposure to xenobiotics. Recently, many important advances have been made in the mechanisms that regulate the expression of these drug metabolism genes. Various nuclear receptors including the aryl hydrocarbon receptor (AhR), orphan nuclear receptors, and nuclear factor-erythoroid 2 p45-related factor 2 (Nrf2) have been shown to be the key mediators of drug-induced changes in phase I, phase II metabolizing enzymes as well as phase III transporters involved in efflux mechanisms. For instance, the expression of CYP1 genes can be induced by AhR, which dimerizes with the AhR nuclear translocator (Arnt) , in response to many polycyclic aromatic hydrocarbon (PAHs). Similarly, the steroid family of orphan nuclear receptors, the constitutive androstane receptor (CAR) and pregnane X receptor (PXR), both heterodimerize with the ret-inoid X receptor (RXR), are shown to transcriptionally activate the promoters of CYP2B and CYP3A gene expression by xenobiotics such as phenobarbital-like compounds (CAR) and dexamethasone and rifampin-type of agents (PXR). The peroxisome proliferator activated receptor (PPAR), which is one of the first characterized members of the nuclear hormone receptor, also dimerizes with RXR and has been shown to be activated by lipid lowering agent fib rate-type of compounds leading to transcriptional activation of the promoters on CYP4A gene. CYP7A was recognized as the first target gene of the liver X receptor (LXR), in which the elimination of cholesterol depends on CYP7A. Farnesoid X receptor (FXR) was identified as a bile acid receptor, and its activation results in the inhibition of hepatic acid biosynthesis and increased transport of bile acids from intestinal lumen to the liver, and CYP7A is one of its target genes. The transcriptional activation by these receptors upon binding to the promoters located at the 5-flanking region of these GYP genes generally leads to the induction of their mRNA gene expression. The physiological and the pharmacological implications of common partner of RXR for CAR, PXR, PPAR, LXR and FXR receptors largely remain unknown and are under intense investigations. For the phase II DMEs, phase II gene inducers such as the phenolic compounds butylated hydroxyanisol (BHA), tert-butylhydroquinone (tBHQ), green tea polyphenol (GTP), (-)-epigallocatechin-3-gallate (EGCG) and the isothiocyanates (PEITC, sul­foraphane) generally appear to be electrophiles. They generally possess electrophilic-medi­ated stress response, resulting in the activation of bZIP transcription factors Nrf2 which dimerizes with Mafs and binds to the antioxidant/electrophile response element (ARE/EpRE) promoter, which is located in many phase II DMEs as well as many cellular defensive enzymes such as heme oxygenase-1 (HO-1), with the subsequent induction of the expression of these genes. Phase III transporters, for example, P-glycoprotein (P-gp), multidrug resistance-associated proteins (MRPs), and organic anion transporting polypeptide 2 (OATP2) are expressed in many tissues such as the liver, intestine, kidney, and brain, and play crucial roles in drug absorption, distribution, and excretion. The orphan nuclear receptors PXR and GAR have been shown to be involved in the regulation of these transporters. Along with phase I and phase II enzyme induction, pretreatment with several kinds of inducers has been shown to alter the expression of phase III transporters, and alter the excretion of xenobiotics, which implies that phase III transporters may also be similarly regulated in a coordinated fashion, and provides an important mean to protect the body from xenobiotics insults. It appears that in general, exposure to phase I, phase II and phase III gene inducers may trigger cellular 'stress' response leading to the increase in their gene expression, which ultimately enhance the elimination and clearance of these xenobiotics and/or other 'cellular stresses' including harmful reactive intermediates such as reactive oxygen species (ROS), so that the body will remove the 'stress' expeditiously. Consequently, this homeostatic response of the body plays a central role in the protection of the body against 'environmental' insults such as those elicited by exposure to xenobiotics.