• Title/Summary/Keyword: epigallocatechin-3-gallate

Search Result 185, Processing Time 0.04 seconds

Anti-oxidative and Antibacterial Constituents from Sedum hybridum

  • Gendaram, Odontuya;Choi, Yoen-Hee;Kim, Young-Sup;Ryu, Shi-Yong
    • Natural Product Sciences
    • /
    • v.17 no.4
    • /
    • pp.279-284
    • /
    • 2011
  • Phytochemical studies on the whole extract of Sedum hybridum L., a Mongolian medicinal plant, has been undertaken to isolate active principles responsible for its anti-oxidative and antibacterial activities. Eighteen known compounds, i.e. (1) quercetin, (2) kaempferol, (3) herbacetin-8-O-${\beta}$-D-xylopyranoside, (4) myricetin, (5) gossypetin-8-O-${\beta}$-D-xylopyranoside, (6) gallic acid, (7) 2,4,6-tri-O-galloyl-D-glucopyranose, (8) 6-O-galloylarbutin, (9) myricetin-3-O-${\alpha}$-L-arabinofuranoside, (10) quercetin-3-O-${\alpha}$-L-arabinofuranoside, (11) caffeic acid, (12) ethylgallate, (13) (-) epigallocatechin-3-O-gallate, (14) palmitic acid, (15) stearic acid, (16) stearic acid ethyl ether, (17) ${\beta}$-sitosterol and (18) ${\beta}$-sitosteryl-O-${\beta}$-D-glucopyranose have been isolated and their molecular structures identified by spectroscopic analysis. Thirteen substances including seven flavonol components (1, 2, 3, 4, 5, 9 and 10), five gallic acid derivatives (6, 7, 8, 12 and 13) and caffeic acid (11) exhibited significant, dose-dependent, DPPH radical scavenging activity. Galloyl esters 12 and 13 were revealed to be main active principles for the antibacterial property of the extract of Sedum hybridum L.

Inhibition of Nitric Oxide-induced Neuronal Apoptosis in PC12 Cells by Epigallocatechin Gallate

  • Jung, Ji-Yeon;Jeong, Yeon-Jin;Han, Chang-Ryoung;Kim, Sun Hun;Kim, Hyun-Jin;Lee, Ki-Heon;Park, Ha-Ok;Kim, Won-Jae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.4
    • /
    • pp.239-246
    • /
    • 2005
  • In the central nervous system, nitric oxide (NO) is associated with many pathological diseases such as brain ischemia, neurodegeneration and inflammation. The epigallocatechin gallate (EGCG), a major compound of green tea, is recognized as protective substance against neuronal diseases. This study is aimed to investigate the effect of EGCG on NO-induced cell death in PC12 cells. Administration of sodium nitroprusside (SNP), a NO donor, decreased cell viability in a dose- and time-dependent manner and induced genomic DNA fragmentation with cell shrinkage and chromatin condensation. EGCG diminished the decrement of cell viability and the formation of apoptotic morphologenic changes as well as DNA fragmentation by SNP. EGCG played as an antioxidant that attenuated the production of reactive oxygen species (ROS) by SNP. The cells treated with SNP showed downregulation of Bcl-2, but upregulation of Bax. EGCG ameliorated the altered expression of Bcl-2 and Bax by SNP. The release of cytochrome c from mitochondria into cytosol and expression of voltage -dependent anion channel (VDAC)1, a cytochrome c releasing channel in mitochondria, were increased in SNP-treated cells, whereas were attenuated by EGCG. The enhancement of caspase-9, preceding mitochondria-dependent pathway, caspase-8 and death receptor-dependent pathway, as well as caspase-3 activities were suppressed by EGCG. SNP upragulated Fas and Fas-L, which are death receptor assembly, whereas EGCG ameliorated the expression of Fas enhanced by SNP. These results demonstrated that EGCG has a protective effect against SNP-induced apoptosis in PC12 cells, through scavenging ROS and regulating the mitocondria- and death receptor-mediated signal pathway. The present study suggest that EGCG might be a natural neuroprotective substance.

Optimal Reaction Conditions and Radical Scavenging Activities for the Bioconversion of Green Tea Using Tannase (Tannase를 이용한 녹차의 생물학적 전환의 최적 조건 마련 및 라디칼 소거능)

  • Hong, Yang-Hee;Yeon, You-Kyung;Jung, Eun-Young;Shin, Kwang-Soon;Yu, Kwang-Won;Kim, Tae-Young;Suh, Hyung-Joo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.11
    • /
    • pp.1501-1506
    • /
    • 2011
  • In this study, we optimized the reaction conditions for the bioconversion of green tea using tannase, and to evaluate its radical scavenging activities. Tea catechins such as (-)-epigallocatechin gallate (EGCG) or (-)-epicatechin gallate (ECG) were hydrolyzed by tannase to produce (-)-epigallocatechin (EGC) or (-)-epicatechin (EC), respectively, and a common product, gallic acid. The bioconversion of tea catechins by tannase was increased as enzyme concentration, substrate concentration and incubation time for enzyme dose. The results indicated the optimum reaction conditions for tannase were tannase 30 U/mL (enzyme concentration) on 1% green tea (substrate concentration) for 1 hr (incubation time for enzyme). Tannase enhanced the radical-scavenging properties of green tea; the 2,2-azinobis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals scavenging abilities were significantly (p<0.001) greater for the tannase-treated green tea extract compared to the untreated green tea extract. It is reported that ECG has the greatest antioxidant activity among the catechins in green tea, and the release of gallic acid is considered to be beneficial because of its significant antioxidant potency. The results of this study suggest that the tannase-treated green tea increases antioxidant activities under optimum reaction conditions.

Optimal HPLC Condition for Simultaneous Determination of Catechins and Caffeine in Green Tea Extracts (녹차 함유 카테친 및 카페인 동시분석을 위한 최적 HPLC 분석 조건)

  • Choung, Myoung-Gun;Lee, Min-Seuk
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.53 no.2
    • /
    • pp.224-232
    • /
    • 2008
  • The health benefits associated with tea consumption have resulted in the wide inclusion of green tea extracts in botanical dietary supplements, which are widely consumed as adjuvants for complementary and alternative medicines. Tea contains polyphenols such as catechins or flavan-3-ols including (-)-epicatechin (EC), (-)-epigallocatechin (EGC), (-)-epicatechin gallate (ECG), and (-)-epigallocatechin gallate (EGCG), as well as the alkaloid, caffeine. The contents of catechins and caffeine in green tea are considered as a standard of quality evaluation of green tea. Therefor, the purpose of this study was to investigate the most suitable HPLC condition for simultaneous determination of catechins and caffeine in green tea extracts. The efficient HPLC analytical condition of catechins and caffeine contained green tea extracts was developed. The gradient elution employed a $250\;mm\;{\times}\;4.6\;mm$ i.d. YMC-pak ODS-AM 303 column. The gradient system was used two mobile phases. A gradient elution was performed with mobile phase A, consisting of 0.1% aqueous phosphoric acid, and mobile phase B, comprising 100% MeOH, and delivered at a flow rate of 1 mL/min as follows: $0{\sim}25\;min$, 80% A; $26{\sim}50\;min$, $80{\sim}70%$ A; 51 min, 80% A. $51{\sim}55\;min$, 80% A. The UV detection wavelength was set at 280 nm. The limit of detection (LOD) for catechins and caffeine standards were under 50 ng/mL.

Effect of Storage Conditions on the Quality of Green Tea Beverage (저장 조건이 녹차 음료의 품질에 미치는 영향)

  • Lee, Jung-Min;Lim, Sang-Wook;Cho, Sung-Hwan;Choi, Sung-Gil;Heo, Ho-Jin;Lee, Seung-Cheol
    • Journal of agriculture & life science
    • /
    • v.43 no.3
    • /
    • pp.27-34
    • /
    • 2009
  • Green tea was prepared by soaking 1.5 g of green tea leaves into 100 mL of distilled water at $75^{\circ}C$ for 5 min. The green tea was stored at three different conditions - (A) green tea was stored at not-artificially excluding natural light condition, at natural air condition, and without addition of vitamin C; (B) green tea was stored at artificially excluding natural light condition by wrapping a vial with aluminium foil, at nitrogen filling up condition, and with addition of 30 mg/100 mL of vitamin C; and (C) green tea was stored at artificially excluding natural light condition by wrapping a vial with aluminium foil, at nitrogen filling up condition, and without addition of vitamin C. After 28 days of storage at $4^{\circ}C$, the chemical quality of the green tea was evaluated. Total phenolic contents of (A), (B), and (C) green tea decreased to 71.50, 73.88 and 75.07%, respectively, after storing for 28 days compared to those of beginning state. DPPH radical scavenging activities of (A), (B), and (C) green tea were 87.87, 92.93 and 88.39%, respectively. Epigallocatechin gallate (EGCG), the main active compounds of green tea, contents of (A), (B), and (C) green tea were 130.61, 136.47 and 4.34%, respectively. The results indicated that light, air condition, and vitamin C were significantly important to the chemical quality of green tea during storage.

Inhibitory Effect of Jeju Tea Extracts and Vanadate on Postprandial Hyperglycemia and Hypertension, and In Vitro Study (제주산 녹차, 발효차 추출물과 바나듐의 식후 혈당강하 및 항고혈압 기능에 미치는 In Vitro 효과)

  • Park, Shin Young
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.52 no.4
    • /
    • pp.398-407
    • /
    • 2020
  • The inhibitory effect on α-glucosidase, a marker of postprandial hyperglycemia, and angiotensinconverting enzyme (ACE), a marker of hypertension, was analyzed using non-fermented green tea and three different types of fermented tea, which are popular beverages in modern life. Green tea was mixed with trace amounts of vanadate (50 ㎍/mL), which has insulin-mimetic effects, to investigate the synergistic effect of vanadate on the inhibition of α-glucosidase. The concentration of epigallocatechin gallate (EGCG) and caffeine was also checked. The extracts of green tea and fermented teas showed clear inhibition on α-glucosidase, which caused a decrease in the postprandial glucose levels. The inhibitory effect was most prominent in the 20% fermented tea. Trace amounts of vanadate (50 ㎍/mL)-mixed green tea extract had twice the inhibitory effect on α-glucosidase than the pure tea extract. All teas showed inhibitory effects on ACE. Among those, the effect was most prominent in green tea, which had higher concentrations of EGCG. In contrast, the postprandial glucose-lowering effect and ACE inhibition of the fermented teas, which have a lower level of EGCG, was attributed to some other different functional substances.

Manufacturing of the Enhances Antioxidative Wine Using a Ripe Daebong Persimmon (Dispyros kaki L) (대봉감 연시를 이용한 항산화 활성이 강화된 와인 제조)

  • Joo, Ok-Soo;Kang, Su-Tae;Jeong, Chang-Ho;Lim, Jong-Woo;Park, Yeong-Gyu;Cho, Kye-Man
    • Journal of Applied Biological Chemistry
    • /
    • v.54 no.2
    • /
    • pp.126-134
    • /
    • 2011
  • In this study, the characteristics of alcohol fermentation using ripe Daebong persimmon juice were studied in static fermentation condition by Saccharomycess cerevisiae CS02 in an effort to develop new types of functional wine. Attempts were made to modify the ripe Daebong persimmon juice in order to find suitable conditions for alcohol fermentation. The modified ripe Daebong persimmon juice that was most suitable for alcohol fermentation contained $24^{\circ}brix$ of sugar supplemented with sucrose as a carbon source and 0.5 g/L of $(NH_4)_2HPO_4$ as a nitrogen source. After 9 days of fermentation at $25^{\circ}C$, $12.2{\pm}0.02%$ of alcohol was produced from the modified juice and its pH markedly decreased to $3.97{\pm}0.02$. The wine contained free sugar such as fructose ($0.12{\pm}0.02$ g/L), some organic acids such as malic acid ($35.92{\pm}0.24$ g/L), succinic acid ($8.12{\pm}0.03$ g/L), oxalic acid ($22.14{\pm}0.11$ g/L), and citric acid ($13.63{\pm}0.08$ g/L), as well as some flavanols and phenolic acids such as catechin gallate ($38.99{\pm}0.32$ mg/L), epicatechin gallate ($110.21{\pm}0.16$ mg/L), gallic acid ($163.88{\pm}1.11$ mg/L), epigallocatechin ($15.97{\pm}0.18$ mg/L), and tannic acid ($13.36{\pm}0.02$ mg/L). In addition, the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical (84.25%) and $ABTS^{\cdot+}$ radical (99.65%) scavenging activities were increased significantly with a corresponding increased in the organic acid and phenolic acid contents, but decreased in the flavonoids.

Signal Transduction Pathways: Targets for Green and Black Tea Polyphenols

  • Bode, Ann M.;Dong, Zigang
    • BMB Reports
    • /
    • v.36 no.1
    • /
    • pp.66-77
    • /
    • 2003
  • Tea is one of the most popular beverages consumed in the world and has been demonstrated to have anti-cancer activity in animal models. Research findings suggest that the polyphenolic compounds, (-)-epigallocatechin-3-gallate, found primarily in green tea, and theaflavin-3,3'-digallate, a major component of black tea, are the two most effective anti-cancer factors found in tea. Several mechanisms to explain the chemopreventive effects of tea have been presented but others and we suggest that tea components target specific cell-signaling pathways responsible for regulating cellular proliferation or apoptosis. These pathways include signal transduction pathways leading to activator protein-1 (AP-1) and/or nuclear factor kappa B(NF-${\kappa}B$ ). AP-1 and NF-${\kappa}B$ are transcription factors that are known to be extremely important in tumor promoter-induced cell transformation and tumor promotion, and both are influenced differentially by the MAP kinase pathways. The purpose of this brief review is to present recent research data from other and our laboratory focusing on the tea-induced cellular signal transduction events associated with the MAP kinase, AP-1, and NF-${\kappa}B$ pathways.

The mTOR Signalling Pathway in Cancer and the Potential mTOR Inhibitory Activities of Natural Phytochemicals

  • Tan, Heng Kean;Moad, Ahmed Ismail Hassan;Tan, Mei Lan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.16
    • /
    • pp.6463-6475
    • /
    • 2014
  • The mammalian target of rapamycin (mTOR) kinase plays an important role in regulating cell growth and cell cycle progression in response to cellular signals. It is a key regulator of cell proliferation and many upstream activators and downstream effectors of mTOR are known to be deregulated in various types of cancers. Since the mTOR signalling pathway is commonly activated in human cancers, many researchers are actively developing inhibitors that target key components in the pathway and some of these drugs are already on the market. Numerous preclinical investigations have also suggested that some herbs and natural phytochemicals, such as curcumin, resveratrol, timosaponin III, gallic acid, diosgenin, pomegranate, epigallocatechin gallate (EGCC), genistein and 3,3'-diindolylmethane inhibit the mTOR pathway either directly or indirectly. Some of these natural compounds are also in the clinical trial stage. In this review, the potential anti-cancer and chemopreventive activities and the current status of clinical trials of these phytochemicals are discussed.

Inhibition of Human Neutrophil Elastase by Sesquiterpene Lactone Dimers from the Flowers of Inula britannica

  • Kim, Kwan-Chul;Kim, Dae-Jung;Lee, Myung Sun;Seo, Ji Yun;Yoo, Ick-Dong;Lee, Ik-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.11
    • /
    • pp.1806-1813
    • /
    • 2018
  • A new sesquiterpene lactone dimer [1], together with five known compounds (2-6), was isolated from the flowers of Inula britannica. The structures of these compounds were established by extensive spectroscopic studies and chemical evidence. The inhibitory activities of these isolated compounds (1-6) against human neutrophil elastase (HNE) were also evaluated in vitro; compounds 1 and 6 exhibited significant inhibitory effects against HNE activity, with $IC_{50}$ values of 8.2 and $10.4{\mu}m$, respectively, comparable to that of epigallocatechin gallate (EGCG; $IC_{50}=10.9{\mu}M$). In addition, compounds 3 and 5 exhibited moderate HNE inhibitory effects, with $IC_{50}$ values of 21.9 and $42.5{\mu}M$, respectively. In contrast, compounds 2 and 4 exhibited no such activity ($IC_{50}$ > $100{\mu}M$). The mechanism by which 1 and 3 inhibited HNE was noncompetitive inhibition, with inhibition constant ($K_i$) values of 8.0 and $22.8{\mu}M$, respectively.