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Introduction

 The mammalian target of rapamycin (mTOR) kinase is 
a conserved serine/threonine protein kinase that plays an 
important role in regulating many fundamental molecules 
mediating cell growth and cell cycle progression in 
response to cellular signals in eukaryotes (Liu et al., 
2009b; Houghton, 2010). The mTOR signalling pathway 
has a central role in cellular processes such as cell survival, 
cell growth and proliferation, cell death, and tumor 
angiogenesis. This pathway is frequently hyper-activated 
in several human malignancies and therefore is considered 
to be an interesting and attractive therapeutic target for 
anti-cancer therapy. 
 The mTOR is also known as FKBP12-rapamycin 
associated protein (FRAP), or rapamycin and FKBP12 
target (RAFT), or rapamycin target (RAPT), or sirolimus 
effector protein (SEP). The mTOR gene is located on 
human chromosome 1 in location 1p36.2 (Huang and 
Houghton, 2003). It is identified in mammalian cells as 
a 289 kDa serine/threonine kinase consisting of 2549 
amino acids and the structural domains of mTOR, are 
evolutionarily conserved, comprising of six functional 
domains (Sabatini et al., 1994; Sabers et al., 1995; 
Abraham, 1998). The domains comprise of (1) HEAT 
(Huntingtin elongation factor 3, a subunit of protein 
phosphatase 2A and TOR1) domain, which mediates 
protein-protein interactions; (2) FAT (FRAP-ATM-
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TRAPP) domain; (3) FRB (FKBP12-rapamycin binding) 
domain, which mediates the inhibitory action of rapamycin 
on Raptor-bound mTOR; (4) PIKK (PI3-kinase-related 
kinase) domain, serine phosphorylation sites (S2035 and 
S2481); (5) RD (Repressor domain); and (6) the carboxy-
terminal FATC domain (Kirken and Wang, 2003; Asnaghi 
et al., 2004).
 The mTOR kinase plays a crucial role in regulating cell 
growth, cell proliferation, cell survival, protein synthesis 
and autophagy. It regulates and controls the transcription 
of ribosomal proteins and the synthesis of rRNA and tRNA 
(Hardwick et al., 1999; Powers and Walter, 1999). In 
general, the activity of mTOR is regulated by insulin and 
other growth factors via the phosphatidylinositol 3-kinase 
(PI3K)–Akt pathway (Kadowaki and Kanazawa, 2003).
 In eukaryotic cells, mTOR exists as two different 
complexes: mTORC1; a rapamycin-sensitive complex 
defined by its interaction with Raptor (regulatory-
associated protein of mTOR) and mTORC2; a rapamycin-
insensitive complex defined by its interaction with Rictor 
(rapamycin-insensitive companion of mTOR) (Bharti and 
Aggarwal, 2002; Loewith et al., 2002; Sarbassov et al., 
2004). Raptor is the first protein shown to bind directly 
to mTOR that is required to mediate mTOR regulation of 
p70 ribosomal S6 kinase (p70S6K) and the binding protein 
of eukaryotic translation initiation factor 4E (4E-BP1) 
activities (Bharti and Aggarwal, 2002; Kim et al., 2002a). 
On the other hand, PRAS40 and Deptor are identified as 
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distinct negative regulators of mTORC1 (Sancak et al., 
2007; Peterson et al., 2009).
 In the rapamycin-sensitive mTOR signalling pathway, 
rapamycin binds to FK506-binding protein of 12 kDa 
(FKBP12), and subsequently, the complex binds to the 
FRB domain of mTORC1. This weakens the interaction 
between mTOR and Raptor and subsequently inhibits the 
mTORC1 functions (Kirken and Wang, 2003; Guertin 
et al., 2004; Hay and Sonenberg, 2004). However, the 
mechanisms on how rapamycin and several rapamycin 
derivatives bind to FKBP12 to inhibit mTORC1 signalling 
remain poorly defined (Dowling et al., 2010). Starvation 
or lack of nutrients such as amino acids and/or glucose 
appears to mimic rapamycin treatment which causes rapid 
inactivation of p70S6K and hypophosphorylation of the 
4E-BP1 (Proud, 2002).
 The activity of mTOR is regulated by various growth 
factors such as insulin, insulin-like growth factor 1 (IGF-
1), epidermal growth factor (EGF), transforming growth 
factor (TGF), vascular endothelial growth factor (VEGF), 
hepatocyte growth factor (HGF) and platelet-derived 
growth factor (PDGF) (Gomez-Pinillos and Ferrari, 2012). 
Growth factor-induced activation of mTOR is mediated 
by Class I PI3K which has the unique ability to generate 
oncogenic phosphatidylinositol-3,4,5-triphosphate (PIP3). 
Class II and Class III PI3Ks lack this ability and therefore 
have not been linked to cancer (Vogt et al., 2010). Class I 
PI3Ks are further divided into Class IA PI3Ks and Class 
IB PI3K. Class IA PI3Ks are heterodimers consisting of 
a p85 regulatory subunit that associates with p110α, β 
or δ catalytic subunit and are involved primarily in the 
pathogenesis of human cancer (Rodon et al., 2013). 
 Following growth factor binding to its cognate receptor 
tyrosine kinase (RTK), Class IA PI3Ks are recruited 
to the cell membrane by direct interaction of the p85 

subunit with the activated receptors or by interaction 
with adaptor proteins associated with the receptors. 
Binding removes the inhibitory effect of p85 on p110, 
resulting in activation of p110 catalytic subunit. The 
activated p110 subunit catalyses the phosphorylation of 
phosphatidylinositol-4,5-bisphosphate (PIP2) to PIP3 at 
the membrane. PIP3 is an important second messenger in 
the cell and is the predominant mediator of PI3K activity. 
PIP3 acts as docking sites for signalling proteins that have 
pleckstrin homology (PH) domain, including Akt and 
3-phosphoinositide-dependent kinase 1 (PDK1) (Vogt et 
al., 2010; Baselga, 2011). Figure 1 illustrates the mTOR 
signalling pathway in general.
 The serine/threonine protein kinase Akt, also known 
as protein kinase B (PKB), a downstream effector of 
PI3K, is a critical mediator of mTOR activity (Hay 
and Sonenberg, 2004). Akt activation is initiated by 
translocation to the plasma membrane, which is mediated 
by docking of Akt to PIP3 on the membrane. Akt is then 
phosphorylated on Thr308 by PDK1 and on Ser473 by 
putative PDK2. A number of potential PDK2s have been 
identified, including integrin-linked kinase (ILK), protein 
kinase C β2, DNA-dependent protein kinase (DNA-PK), 
ataxia telangiectasia mutated (ATM), Akt itself and 
mTORC2. Both phosphorylation events are required for 
full activation of Akt. Once Akt has been phosphorylated 
and activated, it phosphorylates many other proteins, 
thereby regulating a wide range of cellular processes 
involved in protein synthesis, cell survival, proliferation 
and metabolism. Akt activates mTOR either by direct 
phosphorylation of mTOR at Ser2448 (Nave et al., 1999) 
or by indirect phosphorylation and inhibition of tuberous 
sclerosis complex 2 (TSC2) (Inoki et al., 2002). Akt 
phosphorylation of TSC2 represses GTPase-activating 
protein (GAP) activity, thereby allowing GTP-bound 

Figure 1. The mTOR Signalling Pathway and Regulatory Feedback Loop
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active Ras homolog enriched in brain (Rheb) to activate 
mTOR (Plas and Thompson, 2005). Phosphorylation of 
mTOR at Ser2481 (an autophosphorylation site) correlates 
to the activation of mTOR catalytic activity (Caron et al., 
2010; Soliman et al., 2010).
 When conditions are favourable for cell growth, 
activated mTORC1 phosphorylates several substrates to 
promote anabolic processes (such as ribosome biogenesis, 
translation and the synthesis of lipids and nucleotides) and 
suppress catabolic processes (such as autophagy) (Fruman 
and Rommel, 2014). The mTORC1 regulates protein 
synthesis through the phosphorylation and inactivation 
of the repressor of mRNA translation, 4E-BP1 and 
through the phosphorylation and activation of p70S6K. 
Phosphorylation of 4E-BP1 releases eukaryotic translation 
initiation factor 4E (eIF4E), allowing it to interact with 
eIF4G to initiate cap-dependent translation. Activated 
p70S6K regulates cell growth via increased translation 
of 5’TOP (terminal oligopyrimidine tract) mRNAs, which 
encode components of the translation machinery, such 
as ribosomal proteins and elongation factors. Through 
the phosphorylation of several other effectors, mTORC1 
promotes lipid biogenesis and metabolism, and suppresses 
autophagy (Hay and Sonenberg, 2004; Gomez-Pinillos and 
Ferrari, 2012; Laplante and Sabatini, 2013). In contrast, 
mTORC2 does not have direct role in regulating protein 
translation. However, mTORC2 is found to phosphorylate 
serum and glucocorticoid-regulated kinase 1 (SGK1), 
protein kinase C (PKC), and also Akt at Ser473, which 
in turn regulates cell cycle progression, cell survival, 
metabolism and cytoskeletal organization (Gomez-Pinillos 
and Ferrari, 2012; Laplante and Sabatini, 2012). 
 The tumour suppressor phosphatase and tensin 
homolog deleted on chromosome 10 (PTEN) is the most 
important negative regulator of the PI3K signalling 
pathway. PTEN is a phosphatidylinositol-3 phosphatase 
that antagonizes PI3K activity by dephosphorylating PIP3 
that is generated by PI3K (Abdulkareem and Blair, 2013). 
Loss of PTEN results in an unrestrained signalling of the 
PI3K pathway, leading to the formation of cancer. It is 
also associated with many types of cancers, including 
breast cancer (Vivanco and Sawyers, 2002; Sansal and 
Sellers, 2004). Another important protein involved in the 
regulation of mTORC1 activity is the tuberous sclerosis 
complex (TSC), which is a heterodimer of two proteins, 
TSC1 (also known as hamartin) and TSC2 (also known 
as tuberin) (Hay and Sonenberg, 2004). TSC1 and TSC2 
functions as a GAP that negatively regulates a small 
GTPase called Rheb, transforming Rheb into its inactive 
GDP-bound state which subsequently unable to activate 
mTOR (Hay and Sonenberg, 2004). Finally, regulatory 
feedback loop exists as an intrinsic mechanism of self-
control to refrain further activation of mTOR pathway. 
Following mTOR phosphorylation, activated p70S6K 
phosphorylates and destabilizes insulin receptor substrate 
1 (IRS1), thereby inhibiting PI3K activation and blocking 
upstream overstimulation of the PI3K/Akt/mTOR cascade 
(Gomez-Pinillos and Ferrari, 2012; Shimobayashi and 
Hall, 2014) (Figure 1). 
 One of most studied and important pathways involved 
in the regulation of autophagy is the PI3K/Akt/mTOR 

signalling pathway. Inhibition of mTOR by nutrient-
depletion, starvation or rapamycin leads to the induction 
of autophagy. Increased levels of the mTOR kinase 
are found to inhibit the autophagy process, resulting in 
excessive cell growth and tumor development. Studies 
have shown that mTORC1 controls autophagy through 
the regulation of a protein complex composed of ULK1 
(unc-51-like kinases), mAtg13 and FIP200 (Ganley et 
al., 2009; Hosokawa et al., 2009; Jung et al., 2009). ULK 
kinase complex is directly controlled by mTOR, of which 
maintains the hyperphosphorylation state of mAtg13 
and suppresses the induction of autophagy (Galluzzi et 
al., 2008). Inhibition of mTOR by rapamycin leads to 
dephosphorylation of ULK1, ULK2, and mAtg13 and 
activates ULK to phosphorylate FIP200, which suggests 
that ULK-Atg13-FIP200 complexes are direct targets of 
mTOR and important regulators of autophagy in response 
to mTOR signalling (Jung et al., 2009).
 In contrast to mTORC1, relatively little is known 
regarding the regulatory pathway of mTORC2. The 
mTOR-Rictor complex, unlike mTOR-Raptor, does not 
bind to FRB domain and is insensitive to rapamycin 
treatment (Loewith et al., 2002; Sarbassov et al., 2004). 
The mTORC2 complex promotes cell signalling through 
phosphorylation and activation of the pro-survival and 
pro-proliferative kinase Akt, which positively regulates 
cell survival, proliferation and metabolism (Sarbassov 
et al., 2006; Manning and Cantley, 2007). The molecular 
mechanism by which mTORC2 regulates cytoskeletal 
organization has not been clearly defined, although 
many different studies have reported that knocking down 
mTORC2 components affects actin polymerization and 
disrupts cell morphology (Jacinto et al., 2004; Sarbassov et 
al., 2004). In another study, depletion of mTOR and Rictor, 
but not Raptor, impairs actin polymerization in neutrophils 
stimulated with chemoattractants and that small Rho 
GTPases Rac and Cdc42 serve as downstream effectors 
of Rictor to regulate actin assembly and organization in 
neutrophils (He et al., 2013). 

The mTOR Signalling Pathway and Cancer

 The mTOR pathway is a key regulator of cell 
proliferation and several upstream activators and 
downstream effectors of mTOR are known to be 
deregulated in some cancers such as renal cell carcinoma, 
non-small cell lung cancer, breast cancer, sarcomas, 
colorectal and gastrointestinal tumors (Law, 2005; 
Tokunaga et al., 2008; Li et al., 2013; Takahashi et al., 
2014; Wang and Zhang, 2014). The mTOR signalling is 
constitutively activated in many tumor types, suggesting 
that mTOR is an attractive target for cancer drug 
development and therapy (Yu et al., 2001; Chan, 2004; 
Shor et al., 2009; Han et al., 2013; Pandurangan, 2013). 
The mTOR signalling network consists of a number of 
tumor suppressor genes and proto-oncogenes, thereby 
explains that aberrant activities of these genes will 
promote the formation of cancerous cells.
 The signalling network defined by PI3K, Akt and 
mTOR controls most hallmarks of cancer, including 
cell cycle, survival, metabolism, motility and genomic 
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instability. Cancer genetic studies suggest that the 
PI3K pathway is the most frequently altered pathway 
in human tumours, where the PIK3CA gene (which 
encodes the PI3K p110α catalytic isoform) is the second 
most frequently mutated oncogene, and PTEN is among 
the most frequently mutated tumour suppressor genes 
(Fruman and Rommel, 2014). Therefore, PI3K pathway 
is probably one of the most important pathways in cancer 
metabolism and growth, and has been identified as an 
important target in breast cancer research (Baselga, 2011). 
 The p110α and p110β isoforms of Class I PI3Ks are 
expressed in almost all tissues and cell types, both of 
which play important roles in regulating cell growth and 
metabolism (Vogt et al., 2010). The p110α isoform is 
the most important subunit in PI3K as it is important for 
the growth and maintenance of numerous tumours that 
feature PI3K activation. Ablation of p110α resulted in 
substantially reduced Akt phosphorylation in response 
to stimulation by various growth factors (Zhao et al., 
2006; Pal and Mandal, 2012). Of the four Class I PI3K 
catalytic isoforms, only PIK3CA (encoding p110α) is 
frequently mutated in human cancer. Mutations in Class 
I PI3K regulatory subunit genes are also found in cancer 
cells and cause increased PI3K activity (Fruman and 
Rommel, 2014). PIK3CA and PIK3R1 (which encodes 
p85 regulatory subunit) are mutated at frequencies ranging 
from 5%-25% in several common cancers, including 
cancers of the breast, endometrium and large intestine 
(Vogt et al., 2010). Overall, 20%-25% of breast tumors 
exhibit PIK3CA mutation (Baselga, 2011). PIK3CA 
mutation has been shown to increase PIP3 level, activate 
Akt signalling and promote oncogenic transformation 
(Baselga, 2011). 
 Akt is frequently and constitutively active in many 
types of human cancer. Constitutive Akt activation can 
occur as a result of amplification of Akt genes or due 
to mutations in components of the signalling pathway 
that activate Akt. Constitutive Akt signalling is believed 
to promote proliferation and increase cell survival, 
thereby contributing to cancer progression (Nicholson 
and Anderson, 2002). Amplification of Akt1, Akt2 and 
Akt3 has been reported in breast, ovarian, pancreatic and 
gastric cancers (Rodon et al., 2013). Activating mutation 
in Akt1, which results in growth factor-independent 
membrane translocation of Akt and increased Akt 
phosphorylation, was identified in breast, melanoma, 
colorectal and ovarian cancers. Phosphorylation of Akt at 
Ser473 has been associated with poor prognosis in human 
cancers, including breast cancer (LoPiccolo et al., 2008). 
Transgenic mice generated by expressing myristoylated-
Akt1 (myr-Akt1) under the control of the MMTV-LTR 
promoter revealed that expression of myr-Akt1 in 
mammary glands alone did not increase the frequency 
of tumor formation. However, there was an increased 
susceptibility of forming mammary tumors induced by 
DMBA in the transgenic mice, especially in post-lactation 
mice, indicating that Akt1 accelerates carcinogen-induced 
tumorigenesis (Wu et al., 2014). Interestingly, although 
mutations in PDK1 are rarely found in human cancer, 
amplification or overexpression of PDK1 was found in 
~20% of breast cancers (Liu et al., 2009a).

 Aberrant activation of mTOR has been implicated in 
certain cancers. Activation of mTOR provides tumour cells 
with a growth advantage by promoting protein synthesis 
and contributes to the genesis of cancer through its effect 
on cell cycle progression (Fingar et al., 2004). The effects 
of mTOR on cell cycle progression is mediated, at least in 
part, by the increased translation of positive regulators of 
cell cycle progression, such as cyclin D1 and Myc, and by 
decreased translation of negative regulators thereof, such 
as p27kip1 (Gera et al., 2004; Hay and Sonenberg, 2004). 
On the other hand, tumor suppressor PTEN is frequently 
mutated in advanced stages of human cancers, particularly 
glioblastoma, endometrial and prostate cancers. Germline 
mutations in the PTEN gene give rise to Cowden’s disease, 
which is associated with an increased risk of developing 
breast cancer and other cancers (Nicholson and Anderson, 
2002). Somatic loss of PTEN by gene mutation or deletion 
frequently occurs in human cancers. PTEN is deleted or 
mutated in approximately 45% of uterine endometrial 
cancers, 30% of glioblastomas and spinal tumors, and 
less commonly in cancers of the prostate, bladder, adrenal 
glands, thyroid, breast, skin (melanomas) and colon 
(Abdulkareem and Blair, 2013). 

Clinical Development of PI3K/Akt/mTOR 
(PAM) Inhibitors 

 Since mTOR signalling pathway is one of the most 
commonly activated signalling networks in human 
cancers and that kinases are amenable to pharmacological 
intervention, many pharmaceutical companies and 
academic laboratories are actively developing inhibitors 
that target key components in the pathway (Moschetta et 
al., 2014). Many of the agents developed and evaluated in 
early stage clinical trials have been shown to be safe, well 
tolerated and effective in multiple tumor types. Current 
PAM inhibitors in early development include reversible 
ATP-competitive inhibitors of the four p110 isoforms of 
Class I PI3K (also known as pan-PI3K inhibitors), the 
irreversible pan-PI3K inhibitors, p110 isoform-specific 
inhibitors, dual pan-PI3K-mTOR inhibitors, Akt inhibitors 
and mTOR inhibitors (Rodon et al., 2013; Porta et al., 
2014). 
 Wortmannin and LY294002 are two well known, 
first generation pan-PI3K inhibitors. Wortmannin and 
LY294002 are effective inhibitors of PI3K and have 
shown anti-proliferative and apoptotic effects in vitro 
and in vivo. However, the use of these two compounds is 
limited to the preclinical level due to their instability in 
aqueous solutions, toxic side effects, poor pharmaceutical 
properties and lack of selectivity for individual PI3K 
p110 isoforms (Pal and Mandal, 2012). Isoform-specific 
inhibitors are of particular interest because agents that 
target single isoform may produce fewer side effects and 
less toxicity to the immune system due to the fact that 
p110α and p110β play important roles in multiple cellular 
processes while p110γ and δ isoforms are important in the 
immune system. Some inhibitors of Akt are being tested 
clinically, although the development of Akt-specific and 
isozyme-selective inhibitors was predicted to be difficult 
due to high degree of homology in the ATP binding pocket 
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between Akt, protein kinase A (PKA) and PKC (Rodon et 
al., 2013).
 Rapamycin, also known as sirolimus, is a prototypical 
mTOR inhibitor. It is an antibiotic macrolide derived 
from bacterium Streptomyces hygroscopius, and first 
isolated in 1975 (Sehgal et al., 1975; Vezina et al., 1975). 
Rapamycin was first developed as immunosuppressant 
by Wyeth pharmaceutical company in 1997 and more 
recently presented as anti-cancer agents in the form of 
various analogues (Liu et al., 2009b). Rapamycin binds 
to its intracellular receptor FKBP12, and subsequently 
attaches to the mTORC1 and suppresses mTOR-mediated 
phosphorylation of p70S6K and 4E-BP1. Rapamycin 
has been precluded from clinical development due to its 
poor aqueous solubility and chemical instability (Hidalgo 
and Rowinsky, 2000; Mita et al., 2003). Rapamycin 
analogues (also known as rapalogues) inhibit mTOR 
through the same mechanism as rapamycin, but have better 
pharmacological properties for clinical use in cancer. In 
general, the therapeutic effects of rapamycin analogues 
are similar to rapamycin (Tsang et al., 2007). Rapamycin 
analogues with improved stability and pharmacological 
properties have been significantly tolerated by patients 
in Phase I trials, and the agents have shown promising 
antitumor effect in many types of cancers including breast 
cancer (Noh et al., 2004).
 Temsirolimus (CCI-779) and everolimus (RAD001) 
are two rapamycin analogues that have been developed 
as anti-cancer drugs (Hasskarl, 2014). Temsirolimus is 
the first mTOR inhibitor approved by FDA, USA for the 
treatment of advanced renal cell carcinoma in 2007. This 
is followed by the approval of everolimus for the treatment 
of adults with advanced and recurrent renal cell carcinoma 
(2009); adults with progressive neuroendocrine tumors of 
pancreatic origin (2011); adults with tuberous sclerosis 
complex (TSC) who have renal angiomyolipomas not 
requiring immediate surgery (2012); children with TSC 
who have a rare brain tumor called subependymal giant 
cell astrocytoma (2012); and for use in combination with 
exemestane to treat certain postmenopausal women with 
advanced hormone receptor positive, HER2-negative 
breast cancer (2012) (Hasskarl, 2014).
 Nevertheless, rapalogues are not broadly effective 
as single agents, although they have been approved for 
the treatment of a few tumour types for which modest 
therapeutic effects can be achieved (Fruman and Rommel, 
2014). Preclinical studies demonstrated that Akt activation 
was triggered after blockade of mTORC1 by rapamycin 
and rapalogues (Sun et al., 2005; O’Reilly et al., 2006; 
Wan et al., 2007). Clinically, upon mTOR blockade with 
everolimus, Akt phosphorylation was upregulated in 
50% of the treated tumors (Tabernero et al., 2008). The 
increased Akt activity can ultimately enhance tumour 
growth. This limited anti-tumour activity of mTOR 
inhibitors is suspected to be related to the fact that these 
agents only inhibit the mTORC1 complex. The blockade 
of mTOR and the resulting inhibition of p70S6K relieves 
regulatory feedback loop, which results in IGF-1R-
mediated feedback activation of Akt (Baselga, 2011; 
Rodon et al., 2013). Therefore, agents targeting both 
mTORC1 and mTORC2, and dual pan-class I PI3K-

mTOR inhibitors are being developed (Rodon et al., 2013). 
In addition, preclinical models have shown that combining 
mTOR inhibitors and IGF-1R antibodies/inhibitors result 
in blockage of mTOR inhibitor-induced Akt activation 
(Wan et al., 2007), and this combination is currently being 
explored in clinical trials (Chen and Sharon, 2013). In the 
pre-clinical and clinical studies, the inhibitors targeting 
the different members of mTOR pathway have been used 
alone or in combination with other targeted agents for the 
treatment of breast cancer (Ghayad and Cohen, 2010). 
 Although the mTOR-targeting therapy was based 
on the premise that an essential PI3K effector Akt 
activates the rapamycin-sensitive mTORC1 pathway, 
new data suggests that rapamycin-insensitive mTORC2 
phosphorylates Akt on a key activation site, providing 
some knowledge that the relationship between mTOR 
and PI3K signalling is complex (Guertin and Sabatini, 
2009). Inhibitors that target both mTORC1 and mTORC2 
would be expected to block activation of the PI3K pathway 
more effectively than rapamycin and its analogues (Liu 
et al., 2009b). Current evidences from the analyses of 
some solid tumors also suggests that dual PI3K/mTOR 
inhibitors, which bind to and inactivate both PI3K and 
mTOR, may achieve better outcomes among resistant 
cancers (Tang and Ling, 2014). Currently, OSI-027 (OSI 
Pharmaceuticals, USA), AZD8055 (Astra Zeneca, UK), 
and INK128 (Intellikine, USA) are the first three ATP-
competitive mTOR inhibitors to enter clinical trials in 
patients with advanced solid tumors and lymphoma (Liu 
et al., 2009a; Garcia-Echeverria, 2010; Houghton, 2010). 
OSI-027 is the first orally bioavailable small-molecule 
mTORC1/mTORC2 inhibitor, a semi-synthetic compound 
with the ability of eliciting both tumor cell apoptosis and 
autophagy and halting tumor cell proliferation (Yap et al., 
2008; Vakana et al., 2010). 

 
Natural Phytochemicals as mTOR Inhibitors

Numerous important anticancer drugs in the market 
are either obtained from natural sources, by structural 
modification of natural compounds, or by synthesis of 
new compounds using natural compound as lead (Cragg 
et al., 1997; da Rocha et al., 2001). Therefore, sourcing 
out new drugs and the continuous interest in using 
natural compounds for cancer therapy is a global effort. 
Numerous preclinical investigations have shown that 
some herbs and natural phytochemicals, such as curcumin, 
resveratrol, timosaponin III, gallic acid, diosgenin, 
pomegranate, epigallocatechin gallate (EGCC), genistein, 
and 3,3’-diindolylmethane inhibit mTOR pathway 
either directly or indirectly (Table 1). Some of them are 
undergoing clinical trials as chemotherapeutic agents, 
chemopreventive compounds and/or combination therapy 
to improve the efficacy of the standard chemotherapy. 
These natural phytochemicals with mTOR inhibitory 
activities have great potential in cancer prevention. This 
is in view that higher consumption of fruits and vegetables 
was associated with lower risk of cancer (Gullett et al., 
2010).

Curcumin, a polyphenol natural compound extracted 
from the plant Curcuma longa L., is commonly used 
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as spice in India and Southeast Asia. It is used as food 
additive and traditional Indian medicine for the treatment 
of various diseases such as biliary disorders, anorexia, 
cough, diabetic wounds, hepatic disorders, rheumatism 
and sinusitis (Shishodia et al., 2007). Curcumin has shown 
exceptional chemopreventive and anti-tumor activities in 
some pre-clinical studies. In HCT116 colorectal cancer 
cells, curcumin downregulates protein and mRNA 
expression of mTOR, Raptor and Rictor, suggesting that 
curcumin exerts its anti-proliferative effects by inhibiting 
the mTOR signalling pathway and thus may represent a 
novel class of mTOR inhibitor (Johnson et al., 2009). In 
human Rh1 and Rh30 rhabdomyosarcoma cells, DU145 
prostate cancer cells, MCF-7 breast cancer cells and 
Hela cervical cancer cells, curcumin rapidly inhibits the 
phosphorylation of mTOR and its downstream effector 
molecules such as p70S6K and 4E-BP1, indicating that 
curcumin may execute its anticancer activity primarily by 
blocking mTOR-mediated signalling pathways in these 
tumor cells (Beevers et al., 2006). Furthermore, curcumin 
induces apoptosis, inhibits cell growth and inhibits the 
basal or type I insulin-like growth factor-induced motility 
of the Rh1 and Rh30 cells (Beevers et al., 2006). Curcumin 
is found to dissociate Raptor, at low concentration, and 
Rictor, at high concentration, from mTOR complex. 
However, it is unclear if curcumin disrupts the mTOR 
complex by direct binding to mTOR or to a component 
of the mTOR complexes (Beevers et al., 2009). In human 
PC3 prostate cancer cells, curcumin suppresses murine 
double minute 2 (MDM2) oncogene expression through 
the erythroblastosis virus transcription factor 2 (EST2) 
by modulating PI3K/mTOR/ETS2 signalling pathway 
(Li et al., 2007a). In both human U87-MG and U373-MG 
malignant glioma cells, curcumin inhibits the Akt/mTOR/
p70S6K pathway and activates the extracellular signal-
regulated kinase (ERK) pathway, resulting in the induction 
of autophagy. On the other hand, activation of Akt pathway 
by recombinant full-length human active Akt1 protein 
(rAkt1) inhibited curcumin-induced autophagy and 
decreased curcumin-inhibited phosphorylation of Akt and 
p70S6K, suggesting that curcumin-induced inactivation 
of Akt/mTOR/p70S6K pathway plays a role in induction 
of autophagy (Aoki et al., 2007). As combined treatment, 
curcumin and dual PI3K/Akt and mTOR inhibitor induce 
apoptosis through p53-dependent Bcl-2 mRNA down-
regulation at the transcriptional level and Mcl-1 protein 
down-regulation at the post-transcriptional level in human 
renal carcinoma Caki cells (Seo et al., 2014). 

The promising effect of curcumin at the preclinical 
phases has led to the initiation of several clinical trials. In 
Phase I clinical studies, it has been shown that curcumin is 
not toxic to human; and in Phase II clinical trial, curcumin 
is well tolerated and produces some biological activity in 
patients with advanced pancreatic cancer (Cheng et al., 
2001; Sharma et al., 2001; Lao et al., 2006; Dhillon et 
al., 2008). Curcumin taken orally for 3 months produces 
histologic improvement of precancerous lesions in 1 out 
of 2 patients with recently resected bladder cancer, 2 out 
of 7 patients of oral leucoplakia, 1 out of 6 patients of 
intestinal metaplasia of the stomach, 1 out of 4 patients 
with uterine cervical intraepithelial neoplasm (CIN) and 2 

out of 6 patients with Bowen’s disease (Cheng et al., 2001). 
Radiologically stable colorectal cancer was demonstrated 
in 5 out of 15 patients after 2-4 months of treatment with 
curcuma extract at doses between 440 and 2200 mg/day, 
containing 36-180 mg of curcumin (Sharma et al., 2001). 
In a Phase II, nonrandomized, open-label clinical trial 
in 44 eligible smokers with eight or more aberrant crypt 
foci (ACF) on screening colonoscopy, a significant 40% 
reduction in ACF number occurred with the 4-g dose 
of curcumin for 30 days. The ACF reduction in the 4-g 
group was associated with a significant, five-fold increase 
in post-treatment plasma curcumin/conjugate levels 
(Carroll et al., 2011). A Phase I/II study of gemcitabine-
based chemotherapy plus curcumin for patients with 
gemcitabine-resistant pancreatic cancer reported that 8 g 
oral curcumin daily with gemcitabine-based chemotherapy 
was safe and feasible in patients with pancreatic cancer 
(Kanai et al., 2011). However, all these are short term 
studies and the unremarkable response rates were not 
surprising and it certainly warrants longer trials.

Interestingly, a randomized, double-blind, placebo-
controlled clinical trial of 30 breast cancer patients revealed 
that oral curcumin, 6.0 g daily during radiotherapy, 
reduced the severity of radiation dermatitis in breast 
cancer patients (Ryan et al., 2013). Curcumin in improved 
formulations have also proven to be safe and acceptable 
among patients in pilot studies (Irving et al., 2013; Kanai 
et al., 2013). Other ongoing clinical trials include Phase 
II combination therapy with standard radiation therapy 
and chemotherapy (capecitabine) in rectal cancer, Phase 
II trial to prevent colon cancer in smokers with aberrant 
crypt foci, Phase II trial in patients with pancreatic cancer, 
Phase II trial in patients with colorectal cancer, Phase I 
trial in patients with advanced cancer as well as Phase I 
trial to prevent colorectal cancer in patients undergoing 
colorectal endoscopy or colorectal surgery (Table 1). 

Resveratrol is a polyphenolic compound present in 
grapes and red wine with potential anti-inflammatory 
and anticancer properties (Pervaiz, 2003; Marques et 
al., 2009). It is used in traditional Chinese and Japanese 
medicine to treat dermatitis, gonorrhea, athlete’s foot and 
hyperlipemia (Aggarwal et al., 2004). In human LNCaP 
prostate carcinoma cells, resveratrol inhibits PI3K/Akt 
signalling pathway and induces apoptosis (Aziz et al., 
2006). Resveratol is also shown to down-regulate the 
PI3K/Akt/mTOR signalling pathway, and combination 
with rapamycin further enhances the resveratrol-
induced cell death in human U251 glioma cells (Jiang 
et al., 2009). In smooth muscle cells (SMC), resveratrol 
blocks the oxidized LDL (oxLDL)-induced activation 
of the mTOR pathway via PI3K/PDK1/Akt, thereby 
inhibiting oxLDL-induced SMC proliferation (Brito et 
al., 2009). In MDA-MB-231 and MCF-7 human breast 
cancer cells, resveratrol decreases mTOR and p70S6K 
phosphorylation, and in combination with rapamycin, 
suppresses the phosphorylation of Akt. An additive effect 
of resveratrol and rapamycin combination suggests some 
therapeutic value in breast cancer (He et al., 2010). In both 
estrogen receptor (ER)-positive and ER-negative breast 
cancer cells, resveratrol activates AMP-activated kinase 
(AMPK) and subsequently downregulates mTOR, 4E-BP1 
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and mRNA translation (Lin 
et al., 2010). 

R e s v e r a t r o l  h a s 
undergone numerous clinical 
investigations for its putative 
cancer chemopreventive 
properties. A pilot study 
of SRT501, a micronized 
resveratrol preparation, 
given as 5.0 g daily for 
14 days, to patients with 
colorectal cancer and hepatic 
m e t a s t a s e s  s c h e d u l e d 
to undergo hepatectomy, 
revealed a marked increase 
of cleaved caspase-3, a 
marker of apoptosis, in 
malignant hepatic tissue 
compared with tissue from 
the placebo-treated patients 
(Howells et al., 2011). In 
healthy volunteers, the 
ingestion of resveratrol 
caused a significant decrease 
in circulating IGF-1 and 
IGFBP-3 in all volunteers, 
suggesting chemopreventive 
activities (Brown et al., 2010). 
In another study with healthy 
volunteers, daily intake of 1 
g of resveratrol for 4 weeks 
revealed an induction of 
GST-pi level and UGT1A1 
activity in individuals with 
low baseline enzyme level/
activity, indicating that 
resveratrol can modulate 
enzyme systems involved 
in carcinogen activation and 
detoxification, suggesting 
a possible mechanism by 
which resveratrol inhibits 
carcinogenesis (Chow et al., 
2010). 

Unfortunately, a Phase II 
study of SRT501 (resveratrol) 
with bortezomib in patients 
w i t h  r e l a p s e d  a n d / o r 
refractory multiple myeloma 
has to be terminated recently 
(Popat et al., 2013). Out of 24 
patients, 9 patients receiving 
SRT501 and bortezomib 
were withdrawn from the 
study, mainly due to serious 
adverse reactions.  The 
predominant study finding 
was an unexpected renal 
toxicity and low efficacy 
of SRT501 with nausea and 
vomiting which could have 
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resulted in disease progression and dehydration. This 
study has demonstrated an unacceptable safety profile 
and minimal efficacy in patients with relapsed/refractory 
multiple myeloma (Popat et al., 2013). At least two more 
clinical trials on colorectal cancer were completed but no 
published data was noted on the outcome. Currently an 
intervention study to examine the effects of resveratrol on 
neuroendocrine tumor is ongoing (Table 1).

Pomegranate, an ancient and mystical fruit of the 
tree Punica granatum L., has been used for centuries 
for the treatment of inflammatory diseases and disorders 
of the digestive tract (Faria and Calhau, 2010). In A/J 
mice, pomegranate fruit extract decreases carcinogen-
induced lung tumorigenesis. Analysis of the murine 
lung tissue sample showed that pomegranate fruit 
extract down-regulates mTOR signalling by inhibiting 
the phosphorylation of PI3K, Akt and mTOR, and 
downstream molecules such as p70S6K and 4E-BP1 
(Khan et al., 2007a). Other anti-carcinogenic effects of 
pomegranate fruit in numerous animal and cell culture 
models are well demonstrated in various studies (Kim et 
al., 2002b; Malik et al., 2005; Khan et al., 2007b).

In a Phase II clinical trial for men with rising PSA 
(prostate serum antigen) after surgery or radiotherapy 
for localized prostate cancer, patients were treated with 8 
ounces of pomegranate juice daily (Pantuck et al., 2006). 
This study shows statistically significant prolongation 
on PSA doubling time over a period of 13 months. 
However, it was uncertain if improvements in biomarker 
like PSA doubling time are likely to serve as surrogate 
for clinical benefit. In a randomized Phase II study of 
pomegranate extract for men with rising PSA following 
initial therapy for localized prostate cancer, pomegranate 
extract treatment was associated with more than 6 
months increase in PSA doubling time without adverse 
effects. Unfortunately, the significance of slowing of 
PSA doubling time remains unclear (Paller et al., 2013). 
Currently, clinical trials using either pomegranate juice 
or extract on prostate cancer patients are still ongoing 
(Table 1).

Genistein, the predominant isoflavone found in 
soybean (Glycine max (L.) Merr.), was found to have 
potent anti-tumor effects on prostate, brain, breast and 
colon cancers (Ravindranath et al., 2004; Hwang et al., 
2009; Nakamura et al., 2009; Das et al., 2010; Sakamoto 
et al., 2010). In Hela and CaSki cervical cancer cells, 
genistein inhibits cell growth by modulating various 
mitogen-activated protein kinases (MAPK) and inhibiting 
Akt phosphorylation (Kim et al., 2009). In MCF-7 breast 
cancer cells, genistein decreases protein expression of total 
Akt and phosphorylated Akt, suggesting that genistein 
could offer protection against breast cancer through down-
regulation of the PI3K/Akt signalling pathway (Anastasius 
et al., 2009). Combination of genistein and indol-3-
carbinol induces apoptosis and autophagy in HT-29 colon 
cancer cells by inhibiting Akt and mTOR phosphorylation 
(Nakamura et al., 2009). In addition, it inhibits Akt kinase 
activity and abrogates the EGF-induced activation of 
Akt in PC3 prostate cancer cells (Li and Sarkar, 2002). 
Genistein is also found to augment the efficacy of cisplatin 
in pancreatic cancer by down-regulating Akt expression 

(Banerjee et al., 2007).
The promising anti-cancer effects of genistein has 

led to Phase II clinical trials involving combination 
therapy of genistein with gemcitabine hydrochloride in 
stage IV breast cancer, genistein with gemcitabine and 
erlotinib in locally advanced or metastatic pancreatic 
cancer as well as genistein with vitamin D in men with 
early stage prostate cancer (Table 1). Other clinical trials 
of genistein include Phase II study in patients who are 
undergoing surgery for bladder cancer, Phase II study 
in patients with prostate cancer as well as Phase I study 
of genistein in preventing breast or endometrial cancer 
in healthy postmenopausal women (Table 1). A Phase II 
randomized, placebo-controlled trial was carried out to 
investigate whether daily, oral genistein (300 or 600 mg/d) 
as purified soy extract for 14 to 21 days before surgery 
alters molecular pathways in bladder epithelial tissue 
in 59 subjects diagnosed with urothelial bladder cancer 
(Messing et al., 2012). Overall, genistein treatment was 
well tolerated and the observed toxicities were primarily 
mild to moderate. A significant reduction in bladder 
cancer tissue p-EGFR staining was observed in low dose 
treatment group as compared with placebo. However, there 
were no significant differences in tumor tissue staining 
between treatment groups for COX-2, Ki-67, activated 
caspase-3, Akt, p-Akt and MAPK (Messing et al., 2012).

3,3’-diindolylmethane is a potential anticancer 
component found in cruciferous vegetables with anti-
proliferative and antiandrogenic properties in human 
prostate cancer cells (Le et al., 2003; Garikapaty et al., 
2006). In DU145 human prostate cancer cells, the anti-
proliferative effect of 3,3’-diindolylmethane was mediated 
by downregulation of PI3K, total Akt and phosphorylated 
Akt (Garikapaty et al., 2006). BR-DIM, a formulated 
3,3’-diindolylmethane with higher bioavailability, inhibits 
phosphorylation of Akt in C4-2B prostate cancer cells (Li 
et al., 2007b) and inhibits phosphorylation of Akt, mTOR, 
4E-BP1 and p70S6K in platelet-derived growth factor-
D-overexpressing PC3 prostate cancer cells (Kong et al., 
2008). A Phase I dose-escalation study of oral BR-DIM in 
castrate-resistant, non-metastatic prostate cancer patients 
revealed that BR-DIM was well tolerated and modest 
efficacy was demonstrated (Heath et al., 2010). In a pilot 
study to demonstrate the protective effect of BR-DIM 
supplements in postmenopausal women with a history of 
early-stage breast cancer, daily DIM (108 mg DIM/day) 
supplements for 30 days increased the 2-hydroxylation of 
estrogen urinary metabolites (Dalessandri et al., 2004). 
Currently, Phase II/III studies in patients with breast 
cancer and Phase II study in patients with stage I or stage 
II prostate cancer undergoing radical prostatectomy are 
ongoing (Table 1).

EGCG, a polyphenolic compound, is the major 
catechin found in green tea (Nagle et al., 2006). High 
consumption of green tea is associated with decreased risk 
of carcinogenesis and EGCG is a potent antioxidant that 
may have anticancer properties (Nagle et al., 2006; Katiyar 
et al., 2007; Pyrko et al., 2007). EGCG induces AMPK 
in both p53 positive and negative human hepatoma cells, 
resulting in the suppression of mTOR and 4E-BP1, and a 
general decrease in mRNA translation (Huang et al., 2009). 
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In keloid fibroblast, EGCG inhibits the phosphorylation 
of Akt, p70S6K and 4E-BP1 (Zhang et al., 2006). Further 
studies are needed to establish the relationship between 
EGCG and PI3K/Akt/mTOR pathway and to determine 
whether mTOR mediates the effects of EGCG in treating 
brain, prostate, cervical and bladder cancers (Hsieh and 
Wu, 2009; Philips et al., 2009; Qiao et al., 2009; Das et 
al., 2010). However, many current clinical studies focus on 
using green tea extract or polyphenon E in a wide range of 
cancers such as breast cancer, leukemia, multiple myeloma 
and head and neck lesions (Table 1).

Timosaponin AIII is a steroidal saponin isolated 
from Anemarrhena asphodeloides Bunge (Liliaceae), 
a traditional Chinese medicine with anti-diabetic, anti-
platelet aggregation and diuretic activities (Zhang et al., 
1999). Timosaponin AIII has been reported to exhibit 
cytotoxicity towards HeLa cervical cancer cells and 
HCT-15 human colorectal cancer cells (Sy et al., 2008; 
Kang et al., 2011). Timosaponin AIII selectively induces 
cell death in BT474 and MDAM231 breast carcinoma 
cells, but not in normal MCF10A immortalized mammary 
epithelial cells. It exerts its anti-proliferative activity by 
inhibiting phosphorylation of Akt and mTOR, as well as 
p70S6K and 4E-BP1 (King et al., 2009). This compound 
is still in pre-clinical stages and has not progressed into 
clinical trials.

Gallic acid is a natural antioxidant polyhydroxyphenolic 
compound found in various plants and fruits (Chu et al., 
2002; Sun et al., 2002). Gallic acid is also isolated from 
Phaleria macrocarpa (Scheff.) Boerl, an Indonesian 
medicinal plant which is used in traditional medicine 
to control cancer, impotency, hemorrhoids, diabetes 
mellitus, allergies, liver and heart disease. In preclinical 
studies, gallic acid induces apoptosis and inhibits cell 
growth of various cancer cell lines, including human 
TE-2 esophageal cancer, MKN-28 gastric cancer, HT-29 
and Colo201 colon cancer, MCF-7 breast cancer, CaSki 
cervix cancer and mouse colon-26 colon cancer cells 
(Faried et al., 2007). It up-regulates the pro-apoptotic Bax 
protein, induces the caspase-cascade and down-regulates 
anti-apoptotic protein such as Bcl-2 (Faried et al., 2007). 
In human TE-2 esophageal cancer cells, gallic acid 
reduces the phosphorylation of Akt, mTOR and p70S6K, 
suggesting that the inhibitory effect of gallic acid was 
mediated by down-regulation of Akt/mTOR pathway 
(Faried et al., 2007). 

Diosgenin is a naturally occurring plant steroid with 
potential antineoplastic activities as it induces apoptosis 
in various human cancer cell lines (Moalic et al., 2001; 
Liu et al., 2005). In human AU565 HER2-overexpressing 
breast adenocarcinoma cells, diosgenin down-regulates 
protein levels of fatty acid synthase (FAS), phosphorylated 
Akt and phosphorylated mTOR, suggesting that diosgenin 
may suppress FAS expression in AU565 cells through 
PI3K/Akt/mTOR signal transduction pathway (Chiang 
et al., 2007). High levels of FAS are associated with poor 
prognosis in human cancers, and it is highly elevated in 
HER2-overexpressing breast cancer cells (Kuhajda, 2000; 
Kumar-Sinha et al., 2003). In another study to determine 
effect of diosgenin on breast cancer cells, diosgenin is 
found to inhibit p-Akt expression and Akt kinase activity 

without affecting PI3 kinase levels. It causes G1 cell cycle 
arrest by down-regulating cyclin D1, cdk-2 and cdk-4 
expression in breast tumor cells, resulting in inhibition of 
cell proliferation and induction of apoptosis. Interestingly, 
no significant toxicity was seen in the normal breast 
epithelial cells (MCF-10A). In vivo tumor studies indicate 
that diosgenin significantly inhibits tumor growth in both 
MCF-7 and MDA-231 xenografts in nude mice, indicating 
that it is a potential chemotherapeutic agent (Srinivasan 
et al., 2009). Diosgenin, timosaponin AIII and gallic acid 
are still in pre-clinical stages and have not progressed to 
clinical trials.
 
Conclusion

Hyperactivation of the PI3K/Akt/mTOR signalling 
pathway is a prominent hallmark of cancer and is 
frequently implicated in resistance to anticancer therapies 
such as biologics, tyrosine kinase inhibitors, radiation, 
and cytotoxics (Ballou and Lin, 2008). In therapeutic 
sensitivity restoration, inhibitors of the PI3K/Akt/mTOR 
pathway are often evaluated in combination with the 
other anticancer therapies in preclinical models and in 
clinical studies. Current preclinical and clinical evidences 
suggest that inhibitors of the PI3K/Akt/mTOR pathway 
in combination with other anticancer therapies are able to 
circumvent resistance by cancer cells. One of the important 
considerations of mTOR inhibitors would be the general 
tolerability and safety profile of the drugs. Although most 
of the reported toxicities are mild to moderate in severity 
and can be managed clinically by dose modification and 
supportive measures, efforts should continue to optimize 
leads with greater safety and better pharmacological 
profile. It is quite interesting that mTOR signalling 
pathway is not only implicated in various cancers but 
appears to be involved in multiple disease conditions. 
For example, rapamycin was also investigated for its 
longevity activity and lifespan extension possibilities. 
The relationship between age-associated diseases with 
mTOR and its signalling systems are intriguing. The 
mTOR signalling pathway clearly offers tremendous 
opportunities for discovery of new drugs that target both 
aging and its associated diseases (Sharp and Richardson, 
2011).

Rapamycin and its analogues are versatile drugs 
with proven efficacy in cancer and new drugs produced 
promising results in various cancer-related clinical trials. 
Potential chemopreventive activities of some natural 
phytochemicals such as curcumin, green tea extract and 
pomegranate are convincing as more and more trials were 
carried out to provide evidence-based data to advocate 
chemoprevention of cancer. The challenge for the 
future will be to further dissect the molecular signalling 
pathway to fully understand the mechanisms underpinning 
sensitivity or resistance to mTOR inhibition. The uncover 
of these pathways and identification of novel drug targets 
will provide insight into rational combinations of mTOR 
inhibitors with classic cytotoxic agents, radiation, and 
other molecular targeted therapies in the treatment and 
prevention of cancer as well as to discover novel uses of 
this class of drugs.
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