• Title/Summary/Keyword: ependymal cell

Search Result 10, Processing Time 0.032 seconds

Ependymal Cells Require Anks1a for Their Proper Development

  • Park, Sunjung;Lee, Haeryung;Lee, Jiyeon;Park, Eunjeong;Park, Soochul
    • Molecules and Cells
    • /
    • v.42 no.3
    • /
    • pp.245-251
    • /
    • 2019
  • Ependymal cells constitute the multi-ciliated epithelium, which lines the brain ventricular lumen. Although ependymal cells originate from radial glial cells in the perinatal rodent brain, the exact mechanisms underlying the full differentiation of ependymal cells are poorly understood. In this report, we present evidence that the Anks1a phosphotyrosine binding domain (PTB) adaptor is required for the proper development of ependymal cells in the rodent postnatal brain. Anks1a gene trap targeted LacZ reporter analysis revealed that Anks1a is expressed prominently in the ventricular region of the early postnatal brain and that its expression is restricted to mature ependymal cells during postnatal brain development. In addition, Anks1a-deficient ependymal cells were shown to possess type B cell characteristics, suggesting that ependymal cells require Anks1a in order to be fully differentiated. Finally, Anks1a overexpression in the lateral wall of the neonatal brain resulted in an increase in the number of ependymal cells during postnatal brain development. Altogether, our results suggest that ependymal cells require Anks1a PTB adaptor for their proper development.

In Vivo Expression of the PTB-deleted Odin Mutant Results in Hydrocephalus

  • Park, Sunjung;Lee, Haeryung;Park, Soochul
    • Molecules and Cells
    • /
    • v.38 no.5
    • /
    • pp.426-431
    • /
    • 2015
  • Odin has been implicated in the downstream signaling pathway of receptor tyrosine kinases, such as the epidermal growth factor and Eph receptors. However, the physiologically relevant function of Odin needs to be further determined. In this study, we used Odin heterozygous mice to analyze the Odin expression pattern; the targeted allele contained a ${\beta}$-geo gene trap vector inserted into the 14t intron of the Odin gene. Interestingly, we found that Odin was exclusively expressed in ependymal cells along the brain ventricles. In particular, Odin was highly expressed in the subcommissural organ, a small ependymal glandular tissue. However, we did not observe any morphological abnormalities in the brain ventricles or ependymal cells of Odin null-mutant mice. We also generated BAC transgenic mice that expressed the PTB-deleted Odin (dPTB) after a floxed GFP-STOP cassette was excised by tissue-specific Cre expression. Strikingly, Odin-dPTB expression played a causative role in the development of the hydrocephalic phenotype, primarily in the midbrain. In addition, Odin-dPTB expression disrupted proper development of the subcommissural organ and interfered with ependymal cell maturation in the cerebral aqueduct. Taken together, our findings strongly suggest that Odin plays a role in the differentiation of ependymal cells during early postnatal brain development.

ANKS1A-Deficiency Aberrantly Increases the Entry of the Protein Transport Machinery into the Ependymal Cilia

  • Haeryung Lee;Jiyeon Lee;Miram Shin;Soochul Park
    • Molecules and Cells
    • /
    • v.46 no.12
    • /
    • pp.757-763
    • /
    • 2023
  • In this study, we examine whether a change in the protein levels for FOP in Ankyrin repeat and SAM domain-containing protein 1A (ANKS1A)-deficient ependymal cells affects the intraflagellar transport (IFT) protein transport system in the multicilia. Three distinct abnormalities are observed in the multicilia of ANKS1A-deficient ependymal cells. First, there were a greater number of IFT88-positive trains along the cilia from ANKS1A deficiency. The results are similar to each isolated cilium as well. Second, each isolated cilium contains a significant increase in the number of extracellular vesicles (ECVs) due to the lack of ANKS1A. Third, Van Gogh-like 2 (Vangl2), a ciliary membrane protein, is abundantly detected along the cilia and in the ECVs attached to them for ANKS1A-deficient cells. We also use primary ependymal culture systems to obtain the ECVs released from the multicilia. Consequently, we find that ECVs from ANKS1A-deficient cells contain more IFT machinery and Vangl2. These results indicate that ANKS1A deficiency increases the entry of the protein transport machinery into the multicilia and as a result of these abnormal protein transports, excessive ECVs form along the cilia. We conclude that ependymal cells make use of the ECV-based disposal system in order to eliminate excessively transported proteins from basal bodies.

Deup1 Expression Interferes with Multiciliated Differentiation

  • Miram Shin;Jiyeon Lee;Haeryung Lee;Vijay Kumar;Jaebong Kim;Soochul Park
    • Molecules and Cells
    • /
    • v.46 no.12
    • /
    • pp.746-756
    • /
    • 2023
  • A recent study revealed that the loss of Deup1 expression does not affect either centriole amplification or multicilia formation. Therefore, the deuterosome per se is not a platform for amplification of centrioles. In this study, we examine whether gain-of-function of Deup1 affects the development of multiciliated ependymal cells. Our time-lapse study reveals that deuterosomes with an average diameter of 300 nm have two different fates during ependymal differentiation. In the first instance, deuterosomes are scattered and gradually disappear as cells become multiciliated. In the second instance, deuterosomes self-organize into a larger aggregate, called a deuterosome cluster (DC). Unlike scattered deuterosomes, DCs possess centriole components primarily within their large structure. A characteristic of DC-containing cells is that they tend to become primary ciliated rather than multiciliated. Our in utero electroporation study shows that DCs in ependymal tissue are mostly observed at early postnatal stages, but are scarce at late postnatal stages, suggesting the presence of DC antagonists within the differentiating cells. Importantly, from our bead flow assay, ectopic expression of Deup1 significantly impairs cerebrospinal fluid flow. Furthermore, we show that expression of mouse Deup1 in Xenopus embryos has an inhibitory effect on differentiation of multiciliated cells in the epidermis. Taken together, we conclude that the DC formation of Deup1 in multiciliated cells inhibits production of multiple centrioles.

Ultrastructural Study on the Ependymal Cells of the Read-Irradiated Rats (방사선이 뇌실막세포의 미세구조에 미치는 영향)

  • Ahn, E-Tay;Cho, Hwee-Dong;Kim, Jin-Gook;Park, Kyung-Ho;Ko, Jeong-Sik
    • Applied Microscopy
    • /
    • v.29 no.1
    • /
    • pp.11-23
    • /
    • 1999
  • Ultrastructure of the ependymal cells of X-irradiated rats on their head were studied. Rats weighing $200\sim250gm$ were X-irradiated on their head and neck areas. Total exposures were 3,000 rads or 6,000 rads depending on experimental groups. And irradiated rats were sacrificed on 6 hours, 2 days and 6 days following the radiation exposures. Animals were perfused through the heart with 1% glutaraldehyde-1% paraformaldehyde solution, under ether-anesthesia. The tissues from the wall of lateral ventricles were fixed in the 2% osmium tetroxide solution. The results observed with electron microscope were as follow: 1. In 6 hours group, many ependymal cells were swelled, luminal portions of cytoplasms of some cells protruded into the ventricular lumen, and many cilia were lost or irregularly altered. 2. In 2 days group, ependymal cells were swelled more severely and subependymal edema were pronounced. 3. Protruded cytoplasm contained usually basal bodies of cilia, groups of mitochondria, endoplasmic reticula , etc. 4. Following X-irradiations, some protruded masses contained neural elements including the axon terminals with dense core vesicles. Axons and axon terminals were also found in the enlarged intercellular spaces among ependymal cells. From the above results, the heavy irradiation on the head area of the rat induced alteration of the ependymal cells lining the lateral ventricle. Hence the ependymal functions of selective barrier, protective barrier, and metabolic barrier could be altered following X-irradiation on the head.

  • PDF

Immunohistochemical and Immunocytochemical Study about the Glial Fibrillary Acidic Protein in the Tanycytes of the Area Postrema of Bat (박쥐 맨아래구역 띠뇌실막세포의 Glial Fibrillary Acidic Protein에 대한 면역조직화학 및 면역세포화학적 연구)

  • Yang, Young-Chul;Cho, Byung-Pil;Kang, Ho-Suck
    • Applied Microscopy
    • /
    • v.30 no.4
    • /
    • pp.377-387
    • /
    • 2000
  • There are a few tanycytes between the general ependymal cells lining the ependymal layer of the brain ventricle. These cells are considered as modified ependymal cells which possess a long basal process. Tanycytes are known to have an ability to communicate by absorbing substances from cerebrospinal fluid and transporting them to the blood vessels and/or to the neurons in the CNS. The third and fourth ventricular tanycytes were mainly studied as subjects but it's rare to find reports about the tanycytes of the area postrema. Glial fibrillary acidic protein is an intermediate filament protein that is expressed especially in astrocytes of the CNS. But GFAP is also found in filament of the tanycytes and its process. Therefore this study was carried out for the examination of the GFAP immunoreactive tanycytes lining the area postrema of the bat, and we also examined the ultrastructure of tanycytes using electron microscope. GFAP immunoreactive tanycytes were located in the caudal portion of the fourth ventricle, and especially mainly in the transitional zone between the floor of the caudal fourth ventricle and ependymal layer lining the area postrema. A few GFAP immunoreactive tanycytes were also found in the ependymal layer lining the area postrema, and some groups of tanycytes were found in the ependymal layer of the area postrema near the floor of the caudal fourth ventricle , The processes of tanycytes were stained deeply with anti-GFAP antibody. Especially the GFAP immunoreactive tanycytes lining the area postrema had very long processes that cross the whole width of the area postrema. In the electron microscope, the cell body of ependymal tanycyte was located on the ependymal layer and had a long basal process. Intermediate filaments were observed around the nucleus and well developed in the process of tanycrte. Longitudinal oriented long mitochondria and a few lipid droplets were also found in this process. After immunocytocheical staining, the gold particles were found only in the intermediate filaments. We could not determine the function of the tanycytes in the area postrema. Thus, further investigation is required to determine the functional relationship between the tanycytes and the area postrema in hibernating animal, the bat.

  • PDF

The Effects of EGEE on the Morphometry in the Thickness and Histogenesis of Rat Cerebral Cortex During Developmental Phase (발생기 흰쥐 대뇌 피질의 형태 구조에 미치는 Ethylene Glycol Monoethyl Ether의 영향)

  • Lee Eung-Hee;Jeong Gil-Nam;Jo Gi-Jin;Jo Un-Bock
    • Journal of Life Science
    • /
    • v.14 no.6 s.67
    • /
    • pp.975-985
    • /
    • 2004
  • This study attempts to investigate the developmental alterations of rat cerebral cortex, and the effects of EGEE on the developmental cerebral cortex in the prenatal, postnatal and adults were examined by morphological methods and H-E staining was used for the histological changes. In the case of injection of EGEE, at 14 day of fetal phase, parietal cortex was thickest $(95{\pm}12.7\;{\mu}m)$ but, it was thinner than in the control group $(102{\pm}14.0\;{\mu}m)$ and, occipital cortex $(57{\pm}10.5\;{\mu}m)$ compared with other cortexes was the thinnest in fetal phase. In the suckling phase, each cortex grew thick quickly but, after weanning phase, the growth of the cortex slowed and the thickness of cortex was similar to that of cortex in the adult phase. At 105 day after birth, the parietal cortex was thickest $(934{\pm}21.6\;{\mu}m)$ but, decreased compared with control group $(1113{\pm}19.0\;{\mu}m)$. When EGEE was injected in intraperitoneal of rat, the number of neuroblasts per unit area was largest $(207.7{\pm}11.4/10^{-2}\;mm$ at the mantle layer of parietal cortex at 14 day of fetal phase but, decreased compared with control group $(224.2{\pm}13.8/10^{-2}\;mm$ , and the size was largest $(7.5{\pm}1.3\;{\mu}m)$ at the ependymal cell layer of occipital cortex at 3 day after birth but, decreased compared with control group $(9.0{\pm}1.2\;{\mu}m)$. Simillar to control group, the number of granular cells and pyramidal cells were largest at the II and III layer of parietal cortex, but decreased during developmental phase. The size was largest at the IV and V layer of occipital cortex but it was decreased compared with control group. When EGEE was injected in intraperitoneal of rat, the cerebral cortex from fetal phase to 3 day after birth has differentiated into the 3 layers; ependymal, mantle and marginal layer, but empty cisternaes or vacoules in the cerebral cortexes and the condensed phases of neuroblasts were appeared. From 5 day after birth, it has differentiated into the 4 layers; molecular, external granular, mixed layer of internal granular, external and internal pyramidal cells and multiformal layer but, empty cisternaes or vacoules in the granular and pyramidal cell layers were appeared and the number per unit area of neuron was decreased. In the cerebral cortex of the weaning and adult phases, division of cell layers was not clear and empty cisternae was formed in the cortex with the cells in external granular and pyramidal cell layers, was magnified or condensed around blood vessels of neurons.

Immunohistochemical Studies of Human Ribosomal Protein S3 (rpS3)

  • Choi, Soo-Hyun;Kim, So-Young;An, Jae-Jin;Lee, Sun-Hwa;Kim, Dae-Won;Won, Moo-Ho;Kang, Tae-Cheon;Park, Jin-Seu;Eum, Won-Sik;Kim, Joon;Choi, Soo-Young
    • BMB Reports
    • /
    • v.39 no.2
    • /
    • pp.208-215
    • /
    • 2006
  • The human ribosomal protein S3 (rpS3) was expressed in E. coli using the pET-I5b vector and the monoclonal antibodies (mAbs) were produced and characterized. A total of five hybridoma cell lines were established and the antibodies recognized a single band of molecular weight of 33 kDa on immunoblot with purified rpS3. When the purified rpS3 was incubated with the mAbs, the UV endonuclease activity of rpS3 was inhibited up to a maximum of 49%. The binding affinity of mAbs to rpS3 determined by using a biosensor technology showed that they have similar binding affinities. Using the anti-rpS3 antibodies as probes, we investigated the cross-reactivities of various other mammalian brain tissues and cell lines, including human. The immunoreactive bands on Western blots appeared to be the same molecular mass of 33 kDa in all animal species tested. They also appear to be extensively cross-reactive among different organs in rat. These results demonstrated that only one type of immunologically similar rpS3 protein is present in all of the mammalian brain tissues including human. Furthermore, these antibodies were successfully applied in immunohistochemistry in order to detect rpS3 in the gerbil brain tissues. Among the various regions in the brain tissues, the rpS3 positive neurons were predominantly observed in the ependymal cells, hippocampus and substantia nigra pars compacta. The different distributions of rpS3 in brain tissues reply that rpS3 protein may play an important second function in the neuronal cells.

The Effects of Microcurrent Stimulation on the Astrocytes Proliferation at Injured Brain of Rabbit (극저전류자극이 손상된 토끼 뇌의 별아교세포 증식에 미치는 효과)

  • Kim, Ji-Sung;Min, Kyoung-Ok
    • Journal of Korean Physical Therapy Science
    • /
    • v.9 no.3
    • /
    • pp.107-119
    • /
    • 2002
  • Astrocyte, which shares the greatest part of the brain (about 25%), is a land of glial cell that composes the central nervous system along with microglia, ependymal cell and oligodendroglia. It has 7-9nm of fibers in its cytoplasma, which are composed of glial fibrillary acidic protein (GFAP) and vimentin. As for the functions of the astrocyte, it has, so far, been supposed that the astrocyte will play a cytoskeletal role in maintaining the structure of the cerebrum, play a role as a blood-brain barrier so that it can induce migration of the neuron in its development and substances in the blood cannot go into the nervous tissue, and a role of immunology and phagocytosis. However, it was revealed today that it will be a role in preventing expansion of injury by attaching itself to the connective tissue such as the vessel and the pia mater when the nervous tissue or the arachnoid is injured. Microcurrent stimulation can control current, on the basis of A unit. That is, with such devices using it, it is possible to sense, from the outside, the injured current(wound current) of the lesion and to change it into the normal current, thereby promoting the restoration of the cells. In order to examine the effects of microcurrent stimulation on the injured astrocytes in the rabbits, this study was conducted with 24 New Zealand White Rabbit as its subjects, which were divided into 8 animals of the experiment group and 16 animals of the control group. After the animals in the experiment group were fixed to the stereotaxic apparatus, their hair was removed and their premotor area(association area) perforated by the micro-drill for skull-perforation with the depth of 8mm from the scalp. In one week after the injury, 4 animals in the control group and 8 animals in the experiment group were sacrificed and examined with immunohistochemical method. And in three weeks, the remaining 4 animals in the control group and 8 animals in the experiment group were also sacrificed and examined with the same way. The conclusion has been drawn as follows : In the control group sacrificed in one week after the injury, the astrocytes somewhat increased, compared with the normal animals, and in the group sacrificed in three weeks after the injury, they increased more (p < 0.05). The experiment group A in one week showed a little increase, but there was no significant differences, but the experiment group in three weeks showed more increase, compared with the experiment group in one week (p < 0.05). The experiment group B in one week showed more increase than the control group or the experiment group A, and the experiment group in three weeks showed more increase than the experiment group in one week (p < 0.05). Among the astrocytes, fibrous astrocytes were mostly observed, increasing as they are close to the lesion, and decreasing as they are remote from it. The findings show that microcurrent can cause the astrocytes to proliferate and that it will be more effective to stimulate the cervical part somewhat remote from the lesion rather than to directly stimulate the part of the lesion. Thus, microcurrent stimulation can be one of the methods that can activate the reaction of astrocytes, which is one of the mechanism for treating cerebral injury with hemorrhage. Therefore, this study will be used as basic research data for promoting restoration of functions in the patient with injury in the central nervous system.

  • PDF