• Title/Summary/Keyword: enzymes

Search Result 6,170, Processing Time 0.038 seconds

Effects of Enzyme Supplementation on Growth, Intestinal Content Viscosity, and Digestive Enzyme Activities in Growing Pigs Fed Rough Rice-based Diet

  • Wang, M.Q.;Xu, Z.R.;Sun, J.Y.;Kim, B.G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.2
    • /
    • pp.270-276
    • /
    • 2008
  • The purpose of the present study was to investigate the effects of exogenous non-starch polysaccharides (NSP) enzymes on performance, intestinal content viscosity and digestive enzyme activities of growing pigs fed a rough rice-based diet. A total of 60 crossbred barrows with an initial body weight of 35.16 kg (SD = 0.82) were blocked by body weight and randomly assigned to two treatments with three replications. Each group was fed the diet based on rice with or without exogenous NSP enzymes (2 g/kg of diet). During the 70 days of the feeding trial, all pigs were given free access to feed and water. At the end of the feeding trial, six pigs from each treatment were randomly selected and slaughtered to collect intestinal digesta, intestinal mucosa, and pancreas. The addition of NSP enzymes improved average daily gain (p<0.05) and feed:gain (p<0.05), and decreased viscosity of digesta in the jejunum (p<0.001) and ileum (p<0.01) of pigs. The supplementation of NSP enzymes increased activities of protease (p<0.01), trypsin (p<0.01) and ${\alpha}$-amylase (p<0.05) in duodenal contents. However, digestive enzymes in the pancreas, jejunal and ileal mucosa were unaffected by the supplemental NSP enzymes (p>0.10). The results indicate that the addition of NSP enzymes to rough rice-based diets improved performance of pigs, reduced viscosity and increased digestive activity in the small intestine.

Extraction and Application of Bulk Enzymes and Antimicrobial Substance from Spent Mushroom Substrates

  • Lim, Seon-Hwa;Kwak, A Min;Min, Kyong-Jin;Kim, Sang Su;Kang, Hee Wan
    • 한국균학회소식:학술대회논문집
    • /
    • 2014.10a
    • /
    • pp.19-19
    • /
    • 2014
  • Pleurotus ostreatus, P. eryngii, and Flammulina velutipes are major edible mushrooms that account for over 89% of total mushroom production in Korea. Recently, Agrocybe cylindracea, Hypsizygus marmoreus, and Hericium erinaceu are increasingly being cultivated in mushroom farms. In Korea, the production of edible mushrooms was estimated to be 614,224 ton in 2013. Generally, about 5 kg of mushroom substrate is needed to produce 1 kg of mushroom, and consequently about 25 million tons of spent mushroom substrate (SMS) is produced each year in Korea. Because this massive amount of SMC is unsuitable for reuse in mushroom production, it is either used as garden fertilizer or deposited in landfills, which pollutes the environment. It is reasonably assumed that SMS includes different secondary metabolites and extracellular enzymes produced from mycelia on substrate. Three major groups of enzymes such as cellulases, xylanases, and lignin degrading enzymes are involved in breaking down mushroom substrates. Cellulase and xylanase have been used as the industrial enzymes involving the saccharification of biomass to produce biofuel. In addition, lignin degrading enzymes such as laccases have been used to decolorize the industrial synthetic dyes and remove environmental pollutions such as phenolic compounds. Basidiomycetes produce a large number of biologically active compounds that show antibacterial, antifungal, antiviral, cytotoxic or hallucinogenic activities. However, most previous researches have focused on therapeutics and less on the control of plant diseases. SMS can be considered as an easily available source of active compounds to protect plants from fungal and bacterial infections, helping alleviate the waste disposal problem in the mushroom industry and creating an environmentally friendly method to reduce plant pathogens. We describe extraction of lignocellulytic enzymes and antimicrobial substance from SMSs of different edible mushrooms and their potential applications.

  • PDF

Application of crude enzymes obtained from Pyrus pyrifolia cv. Shingo on milk proteins

  • Park, Min-Gil;Kim, Hyoung-Sub;Nam, In-Sik;Kim, Woan-Sub
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.4
    • /
    • pp.789-797
    • /
    • 2018
  • This study investigated the activity of crude enzymes obtained from Pyrus pyrifolia cv. Shingo on milk proteins. In the milk processing industry, there is an increasing interest in the addition of functional materials to dairy products or functional peptides isolated from milk proteins. First, Pyrus pyrifolia cv. Shingo was separated into core, flesh, and peel regions, and crude enzymes were obtained from the individual regions. The activity of the obtained crude enzymes was measured using casein and gelatin agar. The crude enzyme obtained from the flesh of Pyrus pyrifolia cv. Shingo decomposed gelatin, but the activity of the crude enzymes obtained from the peel and core regions was insignificant. On the other hand, the crude enzymes obtained from the flesh and core regions of Pyrus pyrifolia cv. Shingo had a remarkable enzymatic activity in casein agar. However, the activity of the crude enzyme obtained from the peel region was insignificant. In addition, the crude enzymes obtained from the individual regions were mixed with casein to induce reactions, and the degradation patterns were investigated through electrophoresis and high performance liquid chromatography (HPLC). According to the results, the crude enzymes from Pyrus pyrifolia cv. Shingo degraded milk proteins. Thus, the results of this study can be used in studies on functionality. Additionally, it is expected that the use of pear peels and cores in the milk processing industry would greatly contribute to the reduction of food waste.

Chiral Resolution Using Enzymes (효소를 이용한 광학분할)

  • 이은교;정봉현
    • KSBB Journal
    • /
    • v.15 no.5
    • /
    • pp.415-422
    • /
    • 2000
  • Enzymatic resolution is becoming increasingly important in the production of optically active pharmaceutical drugs and is now challenging the traditional synthetic methods for production of a variety of chiral intermediates and products. This article reviews the recent advances in chirotechnology using enzymes as a catalyst to resolve chiral compounds. The review focuses on the recent trends in chirotechnology and the application of enzymes to the production of industrially valuable pharmaceutical drugs.

  • PDF

Optimum Conditions of Cellulose-Hydrolysis Reaction with Mixed Enzymes of Cellulase and $\beta$-Glucosidase (셀룰라아제와 베타글루코시다아제의 혼합효소를 사용한 섬유소-가수분해반응의 최적조건)

  • 손민일;김태옥
    • KSBB Journal
    • /
    • v.13 no.1
    • /
    • pp.20-25
    • /
    • 1998
  • Optimum conditions of the cellulose-hydrolysis reaction with mixed enzymes(cellulase extracted from Penicellium funiculosum mixed with $\beta$-glucosidase extracted from Almod) were investigated to increase the production of glucose from cellulose. Experimental result showed that optimum conditions fro pH, activity ratio of $\beta$-glucosidase to cellulase, concentration of mixed enzymes, concentration of cellulose as a substrate, and temperature range were 4.2, 0.4, 0.8, U/mL, 40 g/L, and 37$\pm$3$^\circ C$, respectively. In these conditions, quantities of glucose productions by using mixed enzymes were larger than those by using cellulase at optimum conditions.

  • PDF

Mitochondrial DNA polymorphism in the Cheju horses (제주마의 mitochondrial DNA 다형(多型)의 분석(分析))

  • Han, Bang-keun;Chang, Deuk-jee;Tsuchida, Shuichi;Ikemoto, Shigenori
    • Korean Journal of Veterinary Research
    • /
    • v.34 no.2
    • /
    • pp.243-247
    • /
    • 1994
  • As a result of the detection of mitochondrial DNA(mtDNA) polymorphism to Thoroughbred and Percheron using 14 restriction enzymes, mtDNA polymorphism of Cheju horse observed in the Bam HI and Sac I. Only in both restriction enzymes two types were classified as of A type, which is high expression frequency and B type, which is low expression frequency. In the other 12 restriction enzymes mtDNA polymorphism was not detected. On the basis of this information mtDNA polymorphism of Cheju horse was examined but was not observed the polymorphism and only A type was expressed both Bam HI and Sac I restriction enzymes. Through this study Cheju horse was demonstrated that lower genetic variation was expressed from the detection of mtDNA polymorphism.

  • PDF

Detection of Extracellular Enzyme Activities in Ganoderma neo-japonicum

  • Jo, Woo-Sik;Park, Ha-Na;Cho, Doo-Hyun;Yoo, Young-Bok;Park, Seung-Chun
    • Mycobiology
    • /
    • v.39 no.2
    • /
    • pp.118-120
    • /
    • 2011
  • The ability of Ganoderma to produce extracellular enzymes, including ${\beta}$-glucosidase, cellulase, avicelase, pectinase, xylanase, protease, amylase, and ligninase was tested in chromogenic media. ${\beta}$-glucosidase showed the highest activity, among the eight tested enzymes. In particular, Ganoderma neo-japonicum showed significantly stronger activity for ${\beta}$-glucosidase than that of the other enzymes. Two Ganoderma lucidum isolates showed moderate activity for avicelase; however, Ganoderma neojaponicum showed the strongest activity. Moderate ligninase activity was only observed in Ganoderma neo-japonicum. In contrast, pectinase, amylase, protease, and cellulase were not present in Ganoderma. The results show that the degree of activity of the tested enzymes varied depending on the Ganoderma species tested.

Histone Deactylase Inhibitors as Novel Target for Cancer, Diabetes, and Inflammation

  • Singh, Parul;Madhavan, Thirumurthy
    • Journal of Integrative Natural Science
    • /
    • v.6 no.1
    • /
    • pp.57-63
    • /
    • 2013
  • Histone deacetylase (HDACs) is an enzyme family that deacetylates histones and non-histones protein. Availability of crystal structure of HDAC8 has been a boosting factor to generate target based inhibitors. Hydroxamic class is the most studied one to generate potent inhibitors. HDAC class I and class II enzymes are emerging as a therapeutic target for cancer, diabetes, inflammation and other diseases. DNA methylation and histone modification are epigenetic mechanism, is important for the regulation of cellular functions. HDACs enzymes play essential role in gene transcription to regulate cell proliferation, migration and death. The aim of this article is to provide a comprehensive overview about structure and function of HDACs enzymes, histone deacetylase inhibitors (HDACi) and HDACs enzymes as a therapeutic target for cancer, inflammation and diabetes.

Quorum Sensing and Quorum-Quenching Enzymes

  • Dong, Yi-Hu;Zhang, Lian-Hui
    • Journal of Microbiology
    • /
    • v.43 no.spc1
    • /
    • pp.101-109
    • /
    • 2005
  • To gain maximal benefit in a competitive environment, single-celled bacteria have adopted a community genetic regulatory mechanism, known as quorum sensing (QS). Many bacteria use QS signaling systems to synchronize target gene expression and coordinate biological activities among a local population. N-acylhomoserine lactones (AHLs) are one family of the well-characterized QS signals in Gram-negative bacteria, which regulate a range of important biological functions, including virulence and biofilm formation. Several groups of AHL-degradation enzymes have recently been identified in a range of living organisms, including bacteria and eukaryotes. Expression of these enzymes in AHL-dependent pathogens and transgenic plants efficiently quenches the microbial QS signaling and blocks pathogenic infections. Discovery of these novel quorum quenching enzymes has not only provided a promising means to control bacterial infections, but also presents new challenges to investigate their roles in host organisms and their potential impacts on ecosystems.

Enzymatic deinking of wastepaper (폐지의 효소 탈묵)

  • Yoon, Kyung-Dong;Park, Soung-Bae;Park, Young-Hyun;Eom, Tae-Jin
    • Current Research on Agriculture and Life Sciences
    • /
    • v.22
    • /
    • pp.49-56
    • /
    • 2004
  • Cellulolytic enzymes were prepared from alkaline resistant microorganisms which were newly screened from calcic soil. Characteristics of enzymes and enzymatic deinking efficiency of wastepaper were investigated. The results were summarized as fellows: 1. The recovery rate of crude enzyme was 93.7% in Bio-B and 57.4% in Bio-F. 2. The protein content in crude enzymes was lowest and the thermal stability of crude enzymes was highest in Bio-F. 3. The brightness gain of Bio-F deinked pulp was best in ONP and Bio-B deinked pulp was best in MOW. 4. The reject yield was increased with enzymatic deinking flotation process. 5. The residual ink area of paper was increased with enzymatic deinking and large size of ink particles were remained in paper.

  • PDF