• Title/Summary/Keyword: enzyme-digestible

Search Result 19, Processing Time 0.019 seconds

Synthesis of Galactooligosaccharides in the Cheese Whey-based Medium by a Lactase from Lactobacillus paracasei YSM0308

  • Song, Tae-Suk;Lee, Kyung-Sang;Kang, Seung-Bum;Yoo, Seong-Ho;Lee, Jong-Ik;Yoon, Sung-Sik
    • Food Science of Animal Resources
    • /
    • v.33 no.5
    • /
    • pp.565-571
    • /
    • 2013
  • An enzyme ${\beta}$-galactosidase or ${\beta}$-galactohydrolase [EC3.2.1.23], commonly called lactase, mediates galacto-oligosaccharide (GOS) synthesis under conditions of high substrate concentrations. Also, lactase hydrolyzes ${\beta}$($1{\rightarrow}4$) lactose into glucose and galactose, the latter is successively transferred to free lactose to make various oligosaccharides via transgalactosylation. GOS is non-digestible to human digestive enzymes and has been used as a functional prebiotics. Among the 24 lactic acid bacteria (LAB) strains used, Lactobacillus paracasei YSM0308 was selected based on its exhibition of the highest ${\beta}$-galactoside hydrolysis activity, and the crude lactase was prepared for examination of reaction conditions to affect the GOS synthesis. Lactase activity was measured with a spectrophotometer using ONPG (o-nitropheyl ${\beta}$-D-galactopyranoside) method. Lactase activity was not detected in the culture supernatant and was mostly present in the cell pellet after centrifugation. Activity of the crude lactase preparation ranges from102 to 1,053 units/mL, with the highest activity determined for L. paracasei YSM0308. Optimal conditions for GOS synthesis are as follows: concentration of whey powder, pH, temperature, and time were 30%, pH 6.5-7.0, $30^{\circ}C$, and 4 h, respectively. The final GOS concentration was 19.41% (w/v) by the crude YSM0308 lactase, which was obtained from strain YSM0308 grown in the 10% (w/v) reconstituted whey-based medium.

THE EFFECT OF TENSILE FORCE ON DNA AND PROTEIN SYNTHESIS IN BONE CELLS (인장력이 골조직 세포군의 DNA 및 단백합성에 미치는 영향)

  • Kwon, Oh-Sun;Kim, Sang-Cheol
    • The korean journal of orthodontics
    • /
    • v.24 no.4 s.47
    • /
    • pp.933-943
    • /
    • 1994
  • The present study was undertaken to determine the effect of tensile force on DNA and protein biosynthesis in bone cells, and to identify the cell type(s) which primarily respond to external physical force among the heterogenous bone cell populations. As a prerequisite for this study, two bone cell populations which retain fibroblastic and osteoblastic feature were isolated from fetal rat calvaria with sequential enzyme digestion scheme. Tensile force was delivered to each bone cell population by two acrylic resin plates connected with a orthodontic expansion screw during culture period. Rate of DNA and protein synthesis in each bone cell population were assessed by the incorporated radioactivity of $[^3H]-thymidine$ into DNA and $[^3H]-proline$ into fraction of collagenase-digestible protein and noncollagenous protein, respectively. DNA synthesis of osteoblast-like calvarial cell populations was increased significantly by the application of tensile force for 24 hours. In contrast, no alteration in DNA synthesis of fibroblast-like populations could be observed in response to applied force. Tensile force induced the change in protein synthesis of bone cell populations with the same pattern. Total protein and collagen synthesis were increased whithin 24 hours in osteoblast-like populations, but not in fibroblast-like populations by tensile force application. These findings indicate that physical force can affect cellullar activity of the particular cell population, not all cell Populations residing in bone and osteoblasts respond more sensitively than fibroblasts. So osteoblasts can modulate the behavior of other bone cells including osteoclasts by producing several local regulating factors of bone metabolism. In this context, preferential responsiveness of osteoblasts to applied tensile force observed in this study suggests that osteoblasts may play an important role in regulation of physical force-induced remodelling process.

  • PDF

Three-step in vitro digestion model for evaluating and predicting fecal odor emission from growing pigs with different dietary protein intakes

  • Lo, Shih-Hua;Chen, Ching-Yi;Wang, Han-Tsung
    • Animal Bioscience
    • /
    • v.35 no.10
    • /
    • pp.1592-1605
    • /
    • 2022
  • Objective: The objective of this study was to select an effective in vitro digestion-fermentation model to estimate the effect of decreasing dietary crude protein (CP) on odor emission during pig production and to suggest potential prediction markers through in vitro and in vivo experiments. Methods: In the in vitro experiment, three diet formulations with different CP contents (170 g/kg, 150 g/kg, and 130 g/kg) but containing the same standardized ileal digestible essential amino acids (SID-EAA) were assessed. Each diet was evaluated by two different in vitro gastric-intestinal phase digestion methods (flask and dialysis), combined with fresh pig feces-ferment inoculation. Eighteen growing barrows (31.9±1.6 kg) were divided into three groups: control diet (180 g CP/kg, without SID-EAA adjustment), 170 g CP/kg diet, and 150 g CP/kg diet for 4 weeks. Results: The in vitro digestion results indicated that in vitro digestibility was affected by the gastric-intestinal phase digestion method and dietary CP level. According to the gas kinetic and digestibility results, the dialysis method showed greater distinguishability for dietary CP level adjustment. Nitrogen-related odor compounds (NH3-N, indole, p-cresol, and skatole) were highly correlated with urease and protease activity. The feeding study indicated that both EAA-adjusted diets resulted in a lower odor emission especially in p-cresol and skatole. Both protease and urease activity in feces were also closely related to odor emissions from nitrogen metabolism compounds. Conclusion: Dialysis digestion in the gastric-intestinal phase followed by fresh fecal inoculation fermentation is suitable for in vitro diet evaluation. The enzyme activity in the fermentation and the fecal samples might provide a simple and effective estimation tool for nitrogen-related odor emission prediction in both in vitro and in vivo experiments.

Individual or combinational use of phytase, protease, and xylanase for the impacts on total tract digestibility of corn, soybean meal, and distillers dried grains with soluble fed to pigs

  • Adsos Adami Passos;Vitor Hugo Cardoso Moita;Sung Woo Kim
    • Animal Bioscience
    • /
    • v.36 no.12
    • /
    • pp.1869-1879
    • /
    • 2023
  • Objective: This study was to evaluate the effects of individual or combinational use of phytase, protease, and xylanase on total tract digestibility of corn, soybean meal, and distillers dried grains with soluble (DDGS) fed to pigs. Methods: Each experiment had four 4×4 Latin squares using 16 barrows. Each period had 5-d adaptation and 3-d collection. All experiments had: CON (no enzyme); Phy (CON+phytase); Xyl (CON+xylanase); Pro (CON+protease); Phy+Xyl; Phy+Pro, Xyl+Pro, Phy+Xyl+Pro. Each Latin square had 'CON, Phy, Xyl, and Phy+Xyl'; 'CON, Phy, Pro, and Phy+Pro'; 'CON, Pro, Xyl, and Xyl+Pro'; and 'Phy+Xyl, Phy+Pro, Xyl+Pro, Phy+Xyl+Pro'. Results: The digestible energy (DE), metabolizable energy (ME), and nitrogen retention (NR) of corn were not affected by enzymes but the apparent total tract digestibility (ATTD) of phosphorus (P) was improved (p<0.01) by Phy. The DE and ATTD dry matter (DM) in soybean meal were increased (p<0.05) by Phy+Pro and the ATTD P was improved (p<0.01) by Phy, Phy+Pro, and Phy+Xyl. The DE, ME, and ATTD DM in DDGS were improved (p<0.05) by Phy+Xyl and the ATTD P was improved (p<0.01) by Phy, Phy+Pro, and Phy+Xyl. Conclusion: Phytase individually or in combination with xylanase and protease improved the Ca and P digestibility of corn, soybean meal, and DDGS, from the hydrolysis of phytic acid. The supplementation of protease was more effective when combined with phytase and xylanase in the soybean meal and DDGS possibly due to a higher protein content in these feedstuffs. Xylanase was more effective in DDGS diets due to the elevated levels of non-starch polysaccharides in these feedstuffs. However, when xylanase was combined with phytase, it demonstrated a higher efficacy improving the nutrient digestibility of pigs. Overall, combinational uses of feed enzymes can be more efficient for nutrient utilization in soybean meal and DDGS than single enzymes.

The Relationship between Isoniazid Resistance and 463 CodonMutation of katG Gne in Mycobacterium Tuberculosis (결핵균 katG 유전자내 463 Codon 돌연변이와 Isoniazid내성 관계)

  • Park, Young-Kil;Shim, Myung-Sup;Cho, Sang-Hyun;Bai, Gill-Han;Kim, Sang-Jae
    • Tuberculosis and Respiratory Diseases
    • /
    • v.43 no.1
    • /
    • pp.8-13
    • /
    • 1996
  • Background: The 463 codon mutation of katG gene has been reported as an useful marker for the detection of isoniazid(INH) resistant strains of M. tuberculosis. This study aimed to elucidate relationship between 463 mutation in katG gene and INH resistance in M. tuberculosis. Method: DNA was extracted from 28 INH susceptible strains(MIC$\geq\;0.2{\mu}g/ml$ on the L$\ddot{o}$wenstein Jensen media) and used for amplification of 189bp fragment containing 463 codon by PCR. Amplified fragments were digested by restriction enzyme Msp I, analyzed by single strand conformation polymorphism(SSCP) in the MDE gel and sequenced to prove mutation. Result: Only 7(25%) out of 28 were digestible by restriction enzyme Msp I. The SSCP pattern of 21 strains were distinctly different from that of M. tuberculosis H37Rv. Msp I undigestible PCR fragment was substituted at 463 codon from Arg(CGG) to Leu(CTG). Conclusion: This finding clearly indicate no relationship between 463 codon mutation of the katG gene and INH resistance.

  • PDF

Effect of Graded Levels of Tallow in the Diet on Performance, Digestibility of Fat, Lipogenesis and Body Lipid Deposition of the Weaned Piglet

  • Reis de Souza, T.C.;Aumaitre, A.;Mourot, J.;Peiniau, J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.4
    • /
    • pp.497-505
    • /
    • 2000
  • Thirty piglets weaned at 24.5 d of age ($6.9{\pm}0.5kg$) randomly alloted to 3 treatments were used to investigate the effect of dietary tallow on average performance, digestibility of nutrients, metabolic utilization of energy and body composition at 25 kg. Weaned piglets respond to increasing levels of dietary tallow from 0 to 4% and 8% by digestive and metabolic adaptation. Apparent fecal digestibility of fat (AFDf) was highly correlated with the level of dietary tallow (X as % of fat extracted after HCl hydrolysis) by the following curvilinear equation of regression: $AFDf=33.8+6.9X-0.3X^2$. Feed intake expressed as DE was only significantly increased at the higher inclusion level of tallow. But neither average daily gain, nor feed conversion was affected by the addition of fat. On the other hand, body composition at 25 kg was equally affected, by both levels of supplementary fat; dry matter and energy content in the body were significantly higher (p<0.01) in piglets receiving tallow. As a consequence, the energy cost of the live weight gain was also increased from 23 to 24.7 MJ DE/kg (p<0.02) and the efficiency of energy deposition was decreased from 3.2 to 2.8 MJ DE/MJ deposited energy (p<0.01) in the presence of dietary tallow. An increase in the level of fat stimulated the activity of pancreatic lipase up to a constant value of $22{\pm}1.4IU/mg$ protein but conversely depressed the activity of amylase from 300 to 100 IU/mg of protein. The activity of liver acetyl CoA carboxylase and malic enzyme in the perirenal fat were low lind not affected by dietary fat; the activity of glucose-6-phosphate dehydrogenase was high. Opposite to that, the activity of acetyl CoA carboxylase and malic enzyme in the perirenal and backfat were higher than in the liver and both were significantly reduced by the inclusion of fat in the diet. A direct deposition of dietary fat has been demonstrated by increasing the energy and lipid content of the empty body weight gain between 7 and 25 kg of live weight, and decreasing the efficiency of digestible energy utilization.

A Study on the Reducing Pollutants in Non-Ruminant Manure by Increasing Feed Utilization (사료이용율 증가에 따른 비반추가축의 분뇨에 의한 공해발생 감소에 관한 연구)

  • Nahm, K.H.
    • Korean Journal of Poultry Science
    • /
    • v.28 no.3
    • /
    • pp.245-257
    • /
    • 2001
  • Localization of livestock facilities leads to concentration of livestock wastes and subsequent leakage of pollutants into the environment, resulting in public concern about their effects. Nitrogen (N) and phosphorus (P) are the most harmful components of animal manure, but odor from the manure itself and the livestock facilities is also a problem. Improving the nutrient efficiency of the livestock helps to decrease excretion of these environmental contaminants. Pigs and chickens are the main experimental models used in studies to improve nutrient efficiency. Addition of feed supplements and modifying feeding systems to improve nutrient efficiency can result in significant decrease in the N, P, odor and dry matter (DM) weight of manure. Examples of these methods include the following. 1) Addition of synthetic amino acids and reducing protein contents resulted N reductions of 10∼27% in broilers, 18∼35% in chicks and layers, 19∼62% in pigs, and a 9∼43% reduction in odor in pigs. 2) Enzyme supplementation resulted in a 12∼15% reduction in DM weight in broiler manure. 3) Phvtase supplementation resulted in P reductions of 25∼35% in chickens and 20∼60% in pigs. 4) Use of growth promoting substances resulted in a 5∼30% reduction in N and a 53∼56% reduction in odor of pigs. 5) Formulating diets closer to requirements (diet modification) reduced N and P by 10∼15% each in chickens and pigs, and odor by 28∼ 79% in pigs. 6) Phase feeding reduced N and P excretion by chicken and pigs from 10∼33% and 10∼13% each, as well as odor in growing and finishing pigs by 49∼79%. 7) Use of highly digestible raw materials in feed reduced N and P excretion by 5% in chickens and pigs.

  • PDF

Effect of Direct Fed Microbial and Enzyme Supplements on Growth and Biogenic Substances of Growing Steers (혼합미생물제가 육우 송아지의 체내환경에 미치는 영향)

  • Yang, Seung Hak;Kim, Hyeon Shup;Cho, Won Mo;Kim, Sang Bum;Cho, Sung Back;Park, Kyu Hyun;Choi, Dong Yoon;Hwang, Sung Gu;Yoo, Yong Hee
    • Journal of Animal Environmental Science
    • /
    • v.18 no.sup
    • /
    • pp.47-54
    • /
    • 2012
  • Effect of commercial Direct Fed Microbials (DFM) or protease treated feed (PTF) supplementation on growth rate and biogenic substances such as BUN, glucose, IgG, GOT, GPT and Vitamin A, C, E from Holstein steers was studied for 7 months. Thirty two steers aged 2~3 months were separated with 4 groups for control, DFM (PS), protease (ES) and their mix (PS + ES) supplementally fed 0, 100, 100 and 50 + 50 g/day respectively. Weight gain was averagely higher in PS than any others, although there were no differences significantly. All treatments enhanced to 3~8% of control in dry matter, crude protein and total digestible nutrient (P>0.05). Metabolic diseases with veterinary cure had not shown in this study. Plasma GOT and GPT were lower in the PS and ES than control. Plasma glucose concentration was also lower in PS than the others. Total cholesterol of ES was higher than the others but that of PS is the lowest. Plasma vitamin C was higher in PS than the others. It was shown that dietary PS affected change from glucose to vitamin C with not overloading liver. Conclusionally, PS and ES were shown to enhance metabolic health of steers during growing period.

The synthesis of dextran from rice hydrolysates using Gluconobacter oxydans KACC 19357 bioconversion (Gluconobacter oxydans 생물전환을 통한 쌀 가수분해물 유래 dextran 합성)

  • Seung-Min Baek;Hyun Ji Lee;Legesse Shiferaw Chewaka;Chan Soon Park;Bo-Ram Park
    • Food Science and Preservation
    • /
    • v.31 no.1
    • /
    • pp.149-160
    • /
    • 2024
  • Dextran is a glucose homo-polysaccharide with a predominantly α-1,6 glycosidic linkage of microbial source and is known to be produced primarily by lactic acid bacteria. However, it can also be obtained through the dextran dextrinase of acetic acid bacteria (Gluconobacter oxydans). The dextrin-based dextran was obtained from rice starch using G. oxydans fermentation of rice hydrolysate, and its properties were studied. Both dextrin- and rice hydrolysate-added media maintained the OD value of 6 after 20 h of incubation with acetic acid bacteria, and the gel permeation chromatography (GPC) analysis of the supernatant after 72 h of incubation confirmed that a polymeric material with DP of 480 and 405, which was different from the composition of the substrate in the medium, was produced. The glucose linkage pattern of the polysaccharide was confirmed using the proton nuclear magnetic resonance (1H-NMR) and the increased α-1,4:α-1,6 bond ratio from 0.23 and 0.13 to 1:2.37 and 1:4.4, respectively, indicating that the main bonds were converted to α-1,6 bonds. The treatment of dextrin with a rat-derived alpha-glucosidase digestive enzyme resulted in a slow release of glucose, suggesting that rice hydrolysate can be converted to dextran using acetic acid bacteria with glycosyltransferase activity to produce high-value bio-materials with slowly digestible properties.