• Title/Summary/Keyword: enzyme sensor

Search Result 101, Processing Time 0.023 seconds

The Current Status and Future Outlook of Quantum Dot-Based Biosensors for Plant Virus Detection

  • Hong, Sungyeap;Lee, Cheolho
    • The Plant Pathology Journal
    • /
    • v.34 no.2
    • /
    • pp.85-92
    • /
    • 2018
  • Enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR), widely used for the detection of plant viruses, are not easily performed, resulting in a demand for an innovative and more efficient diagnostic method. This paper summarizes the characteristics and research trends of biosensors focusing on the physicochemical properties of both interface elements and bioconjugates. In particular, the topological and photophysical properties of quantum dots (QDs) are discussed, along with QD-based biosensors and their practical applications. The QD-based Fluorescence Resonance Energy Transfer (FRET) genosensor, most widely used in the biomolecule detection fields, and QD-based nanosensor for Rev-RRE interaction assay are presented as examples. In recent years, QD-based biosensors have emerged as a new class of sensor and are expected to open opportunities in plant virus detection, but as yet there have been very few practical applications (Table 3). In this article, the details of those cases and their significance for the future of plant virus detection will be discussed.

AMPK Activators from Natural Products: A Patent Review

  • Uddin, Mohammad Nasir;Sharma, Govinda;Choi, Hong Seok;Lim, Seong-Il;Oh, Won Keun
    • Natural Product Sciences
    • /
    • v.19 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • AMP-activated protein kinase (AMPK) is a major cellular energy sensor and master regulator of metabolic homeostasis. On activation, this cellular fuel sensing enzyme induces a series of metabolic changes to balance energy consumption via multiple downstream signaling pathways controlling nutrient uptake and energy metabolism. This pivotal role of AMPK has led to the development of numerous AMPK activators which might be used as novel drug candidates in the treatment of AMPK related disorders, diabetes, obesity, and other metabolic diseases. Consequently, a number of patents have been published on AMPK activators from natural products and other sources. This review covers the patented AMPK activators from natural products and their therapeutic potential in treatment or prevention of metabolic diseases including diabetes and obesity.

Optimum pH of Chicken peroxidase (닭의 과산화수소 분해효소의 최적pH)

  • Lee, Beom-Gyu;Kwon, Hyo-Shik;Kim, Kyoung-Eun;Yoon, Kil-Joong
    • Analytical Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.286-289
    • /
    • 2001
  • The effect of pH and the substrate concentration on the sensing ability of the chicken peroxidase enzyme electrode was examined quanititatively. Using the new Michaelis-Menten equation, to which pH concept was introduced, enabled to calculate all kinds of dissociation constant related to chicken peroxidase and subsequently to determine the optimum pH of the sensor.

  • PDF

Electropolymerized Thin Bilayers of Poly-5-amino-1-naphthol and Poly-1,3-phenylendiamine for Continuous Monitoring Glucose Sensors

  • Chung, Taek-Dong
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.3
    • /
    • pp.291-294
    • /
    • 2003
  • A highly interferent-resistive membrane, poly-5-amino-1-naphthol (poly-5A1N), underlied beneath enzymeembedded poly-1,3-phenylendiamine (poly-m-PD) network for miniturized continuous monitoring glucose sensors. The enzyme layer was prepared from a mixed solution of glucose oxidase (GOx) and m-PD monomer by simple electrolysis. The mass change of poly-5A1N was monitored by electrochemical quartz crystal microbalance (EQCM) in situ and the corresponding thickness was measured. Successive electropolymerization of poly-5A1N and poly-m-PD create a several tens nm-thick bilayer showing excellent selectivity for $H_2O_2$ and low activity loss of immobilized enzymes.

Development of Disposable Immunosensors for Rapid Determination of Sildenafil and Vardenafil in Functional Foods

  • Vijayaraj, Kathiresan;Lee, Jun Hyuck;Kim, Hyung Sik;Chang, Seung-Cheol
    • Journal of Food Hygiene and Safety
    • /
    • v.32 no.2
    • /
    • pp.83-88
    • /
    • 2017
  • We introduced disposable amperometric immunosensors for the detection of Sildenafil and Vardenafil (SDF/VDF) based on screen printed carbon electrodes. The developed immunosensors were used as a non-competitive sandwich-type enzyme immunoassay with a horseradish peroxidase label. The sensors were constructed on screen printed carbon electrodes by the simple electrochemical deposition of a reduced graphene oxide and chitosan (ErGO-CS) composite. To evaluate the sensing chemistry and optimize the sensor characteristics, a series of electrochemical experiments were carried out including electrochemical impedance spectroscopy, cyclic voltammetry and amperometry. The sensors showed a linear response to SDF/VDF concentrations in a range from 100 pg/mL to 300 ng/mL. The lower detection limit was calculated to be 55 pg/mL, the sensitivity was calculated to be $1.02{\mu}Ang/mL/cm^2$, and the sensor performance exhibited good reproducibility with a relative standard deviation (RSD) of 7.1%. The proposed sensing chemistry strategy and the sensor format can be used as a simple, cost-effective, and feasible method for the in-field analysis of SDF/VDF in functional or health supplement food samples.

Voltammetric Sensor Incorporated with Conductive Polymer, Tyrosinase, and Ionic Liquid Electrolyte for Bisphenol F (전도성고분자, 티로시나아제 효소 및 이온성 액체 전해질을 융합한 전압전류법 기반의 비스페놀F 검출 센서)

  • Sung Eun Ji;Sang Hyuk Lee;Hye Jin Lee
    • Applied Chemistry for Engineering
    • /
    • v.34 no.3
    • /
    • pp.258-263
    • /
    • 2023
  • In this study, conductive polymers and the enzyme tyrosinase (Tyr) were deposited on the surface of a screen printed carbon electrode (SPCE), which can be fabricated as a disposable sensor chip, and applied to the detection of bisphenol F (BPF), an endocrine disruptor with proven links to male diseases and thyroid disorders, using electrochemical methods. On the surface of the SPCE working electrode, which was negatively charged by oxygen plasma treatment, a positively charged conductive polymer, poly(diallyldimethyl ammonium chloride) (PDDA), a negatively charged polymer compound, poly(sodium 4-styrenesulfonate) (PSS), and another layer of PDDA were layered by electrostatic attraction in the order of PDDA, PSS, and finally PDDA. Then, a layer of Tyr, which was negatively charged due to pH adjustment to 7.0, was added to create a PDDA-PSS-PDDA-Tyr sensor for BPF. When the electrode sensor is exposed to a BPF solution, which is the substrate and target analyte, 4,4'-methylenebis(cyclohexa-3,5-diene-1,2-dione) is generated by an oxidation reaction with the Tyr enzyme on the electrode surface. The reduction process of the product at 0.1 V (vs. Ag/AgCl) generating 4,4'-methylenebis(benzene-1,2-diol) was measured using cyclic and differential pulse voltammetries, resulting in a change in the peak current with respect to the concentration of BPF. In addition, we compared the detection performance of BPF using an ionic liquid electrolyte as an alternative to phosphate-buffered saline, which has been used in many previous sensing studies. Furthermore, the selectivity of bisphenol S, which acts as an interfering substance with a similar structure to BPF, was investigated. Finally, we demonstrated the practical applicability of the sensor by applying it to analyze the concentration of BPF in real samples prepared in the laboratory.

Isolation and Characterization of a Gene Encoding Hexokinase from Loquat (Eriobotrya japonica Lindl.)

  • Qin, Qiaoping;Zhang, Lanlan;Xu, Kai;Jiang, Li;Cheng, Longjun;Xu, Chuanmei;Cui, Yongyi
    • Horticultural Science & Technology
    • /
    • v.30 no.3
    • /
    • pp.243-249
    • /
    • 2012
  • Hexokinase is the first enzyme in the hexose assimilation pathway; it acts as a sensor for plant sugar responses, and it is also important in determining the fruit sugar levels. The full-length cDNA of a hexokinase gene was isolated from loquat through reverse transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends, which was designated as EjHXK1. EjHXK1 is 1,839 bp long and contains an entire open reading frame encoding 497 amino acids. The predicted protein of EjHXK1 shares 72%-81% similarity with other plant hexokinases. Phylogeny analysis indicated that EjHXK1 is closely related to maize and rice hexokinases. Transient expression of the 35S: EjHXK1-GFP fusion protein was observed on the cell membrane and cytoplasm. Real-time RT-PCR indicated that EjHXK1 is expressed in loquat leaves, stems, flowers, and fruits. EjHXK1 transcripts were higher during early fruit development, but decreases before maturation, which is consistent with hexokinase enzyme activity during fruit development and conducive for hexose accumulation in mature fruits. These results imply that EjHXK1 may play important roles in the regulation of sugar flux during fruit ripening.

Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain

  • Itoh, Ken;Wakabayashi, Nobunao;Katoh, Yasutake;Ishii, Tetsuro;Igarashi, Kazuhiko;Engel, James Douglas;Yamamoto, Masayuki
    • Proceedings of the Korea Environmental Mutagen Society Conference
    • /
    • 2002.05a
    • /
    • pp.25-35
    • /
    • 2002
  • Transcription factor Nrf2 is essential for the antioxidant responsive element (ARE)-mediated induction of phase II detoxifying and oxidative stress enzyme genes. Detailed analysis of differential Nrf2 activity displayed in transfected cell lines ultimately led to the identification of a new protein, which we named Keap1, that suppresses Nrf2 transcriptional activity by specific binding to its evolutionarily conserved amino-terminal regulatory domain. The closest homolog of Keap1 is a Drosophila actin-binding protein called Kelch, implying that Keap1 might be a Nrf2 cytoplasmic effector. We then showed that electrophilic agents antagonize Keap1 inhibition of Nrf2 activity in vivo, allowing Nrf2 to traverse from the cytoplasm to the nucleus and potentiate the ARE response. We postulate that Keap1 and Nrf2 constitute a crucial cellular sensor for oxidative stress, and together mediate a key step in the signaling pathway that leads to transcriptional activation by this novel Nrf2 nuclear shuttling mechanism. The activation of Nrf2 leads in turn to the induction of phase II enzyme and antioxidative stress genes in response to electrophiles and reactive oxygen species.

  • PDF

BIOSENSORS IN AGRICULTURAL AND BIOLOGICAL SYSTEMS (농업 및 생물계에서의 바이오 센서)

  • Delwiche, M.J.;Jenkins, D.M.;Tang, X.;Jackson, E.S.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11a
    • /
    • pp.76-100
    • /
    • 2000
  • A brief general discussion of the nature and function of biosensors is presented. While the primary motivator for biosensor development has been the health-care industries, recent research efforts have spread to problems in agriculture and biological production systems. To illustrate some of the research from our laboratory, three example biosensors and their corresponding applications are presented. The first of these is an immunosensor for measurement of the hormone progesterone during milking as a method to improve reproductive management of dairy herds. The second example is an enzyme sensor for measurement of urea in milk as a menas to determine the efficiency of conversion of input protein to milk protein and, thus, improve nutritional management of dairy herds. The third example is a DNA sensor using polymerase chain reaction to detect pathogenic bacteria in the wash water of fresh and minimally processed fruits and vegetables. The potential for application of biosensors in agriculture, agrobiotechnology, food processing, and environmental monitoring has barely been realized.

  • PDF

Study of Enzyme Immobilization on Composite of CTA and PCL Membrane for Biosensor (바이오센서용 CTA와 PCL 혼합막에의 효소고정화 기법의 개발)

  • 홍성현;김태진
    • KSBB Journal
    • /
    • v.10 no.4
    • /
    • pp.468-474
    • /
    • 1995
  • The disposable glucose bio-sensor using composite of CTA and PCL membrane was developed for measurement of glucose. The most effective membrane was composed of CTA/PCL(80/20, w/w) and glutaraldehyde one-step immobilization method ($10{\mu}m$ thickness) for glucose sensor gave the best result among various methods, considering oxygen permeability and electronic sensitivity. A scanning electron micrograph of the cross-section of a typical asymmetric CTA/PCL composite membrane showed that the membrane fused with a dense layer covered with a GOD-glutaraldehyde. Glucose oxidase immoblilized on the membrane showed the linearity between difference of absolute amperometric values and glucose concentrations within 7mM when the GOD immobilized electrode was used. About 35% of activity was remained after 8 days when the tyrosinase was immobilized on CTA/PCL (80/20) membrane.

  • PDF