• Title/Summary/Keyword: enzyme secretion

Search Result 295, Processing Time 0.03 seconds

Hesperetin suppresses LPS/high glucose-induced inflammatory responses via TLR/MyD88/NF-κB signaling pathways in THP-1 cells

  • Lee, Aeri;Gu, HyunJi;Gwon, Min-Hee;Yun, Jung-Mi
    • Nutrition Research and Practice
    • /
    • v.15 no.5
    • /
    • pp.591-603
    • /
    • 2021
  • BACKGROUND/OBJECTIVES: Unregulated inflammatory responses caused by hyperglycemia may induce diabetes complications. Hesperetin, a bioflavonoid, is a glycoside in citrus fruits and is known to have antioxidant and anticarcinogenic properties. However, the effect of inflammation on the diabetic environment has not been reported to date. In this study, we investigated the effect of hesperetin on proinflammatory cytokine secretion and its underlying mechanistic regulation in THP-1 macrophages with co-treatment LPS and hyperglycemic conditions. MATERIALS/METHODS: THP-1 cells differentiated by PMA (1 µM) were cultured for 48 h in the presence or absence of hesperetin under normoglycemic (5.5 mM/L glucose) or hyperglycemic (25 mM/L glucose) conditions and then treated with LPS (100 ng/mL) for 6 h before harvesting. Inflammation-related proteins and mRNA levels were evaluated by enzyme-linked immunosorbent assay, western blot, and quantitative polymerase chain reaction analyses. RESULTS: Hesperetin (0-100 µM, 48 h) treatment did not affect cell viability. The tumor necrosis factor-α and interleukin-6 levels increased in cells co-treated with LPS under hyperglycemic conditions compared to normoglycemic conditions, and these increases were decreased by hesperetin treatment. The TLR2/4 and MyD88 activity levels increased in cells co-treated with LPS under hyperglycemic conditions compared to normoglycemic conditions; however, hesperetin treatment inhibited the TLR2/4 and MyD88 activity increases. In addition, nuclear factor-κB (NF-κB) and Acetyl-NF-κB levels increased in response to treatment with LPS under hyperglycemic conditions compared to normoglycemic conditions, but those levels were decreased when treated with hesperetin. SIRT3 and SIRT6 expressions were increased by hesperetin treatment. CONCLUSIONS: Our results suggest that hesperetin may be a potential agent for suppressing inflammation in diabetes.

Effect of Various Agents on Oral Bacterial Phagocytosis in THP-1 Cells

  • Song, Yuri;Lee, Hyun Ah;Na, Hee Sam;Jin, Chung
    • International Journal of Oral Biology
    • /
    • v.43 no.4
    • /
    • pp.217-222
    • /
    • 2018
  • Phagocytosis is a fundamental process in which phagocytes capture and ingest foreign particles including pathogenic bacteria. Several oral pathogens have anti-phagocytic strategies, which allow them to escape from and survive in phagocytes. Impaired bacteria phagocytosis increases inflammation and contributes to inflammatory diseases. The purpose of this study is to investigate the influences of various agents on oral pathogenic phagocytosis. To determine phagocytosis, Streptococcus mutans, Fusobacterium nucleatum, Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis were stained with 5-(and-6)-carboxyfluorescein diacetate succinimidyl ester (CFSE), and was measured using flowcytometery and confocal microscopy. The influencing factors on phagocytosis were evaluated through the pretreatment of ROS inhibitor (N-acetyl-L-cysteine (NAC)), lysozyme, potassium chloride (KCI) and adenosine triphosphate (ATP) in THP-1 cells. Expression of pro-inflammatory cytokines was determined by enzyme-linked immunosorbent assay (ELISA). The phagocytosis of various bacteria increased in a MOI-dependent manner. Among the tested bacteria, phagocytosis of P. gingivalis showed the highest fluorescent intensity at same infection time. Among the tested inhibitors, the NAC treatment significantly inhibited phagocytosis in all tested bacteria. In addition, NAC treatment indicated a similar pattern under the confocal microscopy. Moreover, NAC treatment significantly increased the bacteria-induced secretion of $IL-1{\beta}$ among the tested inhibitors. Taken together, we conclude that the phagocytosis occurs differently depending on each bacterium. Down-regulation by ROS production inhibited phagocytosis and lead increased of oral pathogens-associated inflammation.

Valeriana jatamansi Jones Inhibits Rotavirus-Induced Diarrhea via Phosphatidylinositol 3-Kinase/Protein Kinase B Signaling Pathway

  • Zhang, Bin;Wang, Yan;Jiang, Chunmao;Wu, Caihong;Guo, Guangfu;Chen, Xiaolan;Qiu, Shulei
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.8
    • /
    • pp.1115-1122
    • /
    • 2021
  • Rotavirus (RV), as the main cause of diarrhea in children under 5 years, contributes to various childhood diseases. Valeriana jatamansi Jones is a traditional Chinese herb and possesses antiviral effects. In this study we investigated the potential mechanisms of V. jatamansi Jones in RV-induced diarrhea. MTT assay was performed to evaluate cell proliferation and the diarrhea mice model was constructed using SA11 infection. Mice were administered V. jatamansi Jones and ribavirin. Diarrhea score was used to evaluate the treatment effect. The enzyme-linked immunosorbent assay was performed to detect the level of cytokines. Western blot and quantitative reverse transcription-PCR were used to determine protein and mRNA levels, respectively. Hematoxylin-eosin staining was applied to detect the pathological change of the small intestine. TdT-mediated dUTP nick-end labeling was conducted to determine the apoptosis rate. The results showed V. jatamansi Jones promoted MA104 proliferation. V. jatamansi Jones downregulated phosphatidylinositol 3-kinase (PI3K) and protein kinase B (AKT) in protein level, which was consistent with the immunohistochemistry results. Moreover, V. jatamansi Jones combined with ribavirin regulated interleukin-1β (IL-1β), interferon γ, IL-6, tumor necrosis factor α, and IL-10, and suppressed secretory immunoglobulin A secretion to remove viruses and inhibit dehydration. V. jatamansi Jones + ribavirin facilitated the apoptosis of small intestine cells. In conclusion, V. jatamansi Jones may inhibit RV-induced diarrhea through PI3K/AKT signaling pathway, and could therefore be a potential therapy for diarrhea.

Wheat phytase can alleviate the cellular toxic and inflammatory effects of lipopolysaccharide

  • An, Jeongmin;Cho, Jaiesoon
    • Journal of Animal Science and Technology
    • /
    • v.63 no.1
    • /
    • pp.114-124
    • /
    • 2021
  • The objective of this study was to characterize the enzymatic hydrolysis of lipopolysaccharide (LPS) by wheat phytase and to investigate the effects of wheat phytase-treated LPS on in vitro toxicity, cell viability and release of a pro-inflammatory cytokine, interleukin (IL)-8 by target cells compared with the intact LPS. The phosphatase activity of wheat phytase towards LPS was investigated in the presence or absence of inhibitors such as L-phenylalanine and L-homoarginine. In vitro toxicity of LPS hydrolyzed with wheat phytase in comparison to intact LPS was assessed. Cell viability in human aortic endothelial (HAE) cells exposed to LPS treated with wheat phytase in comparison to intact LPS was measured. The release of IL-8 in human intestinal epithelial cell line, HT-29 cells applied to LPS treated with wheat phytase in comparison to intact LPS was assayed. Wheat phytase hydrolyzed LPS, resulting in a significant release of inorganic phosphate for 1 h (p < 0.05). Furthermore, the degradation of LPS by wheat phytase was nearly unaffected by the addition of L-phenylalanine, the inhibitor of tissue-specific alkaline phosphatase or L-homoarginine, the inhibitor of tissue-non-specific alkaline phosphatase. Wheat phytase effectively reduced the in vitro toxicity of LPS, resulting in a retention of 63% and 54% of its initial toxicity after 1-3 h of the enzyme reaction, respectively (p < 0.05). Intact LPS decreased the cell viability of HAE cells. However, LPS dephosphorylated by wheat phytase counteracted the inhibitory effect on cell viability. LPS treated with wheat phytase decreased IL-8 secretion from intestinal epithelial cell line, HT-29 cell to 14% (p < 0.05) when compared with intact LPS. In conclusion, wheat phytase is a potential therapeutic candidate and prophylactic agent for control of infections induced by pathogenic Gram-negative bacteria and associated LPS-mediated inflammatory diseases in animal husbandry.

Ursolic acid improves the indoxyl sulfate-induced impairment of mitochondrial biogenesis in C2C12 cells

  • Sasaki, Yutaro;Kojima-Yuasa, Akiko;Tadano, Hinako;Mizuno, Ayaka;Kon, Atsushi;Norikura, Toshio
    • Nutrition Research and Practice
    • /
    • v.16 no.2
    • /
    • pp.147-160
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: Patients with chronic kidney disease (CKD) have a high concentration of uremic toxins in their blood and often experience muscle atrophy. Indoxyl sulfate (IS) is a uremic toxin produced by tryptophan metabolism. Although an elevated IS level may induce muscle dysfunction, the effect of IS on physiological concentration has not been elucidated. Additionally, the effects of ursolic acid (UA) on muscle hypertrophy have been reported in healthy models; however, it is unclear whether UA ameliorates muscle dysfunction associated with chronic diseases, such as CKD. Thus, this study aimed to investigate whether UA can improve the IS-induced impairment of mitochondrial biogenesis. MATERIALS/METHODS: C2C12 cells were incubated with or without IS (0.1 mM) and UA (1 or 2 μM) to elucidate the physiological effect of UA on CKD-related mitochondrial dysfunction and its related mechanisms using real-time reverse transcription-polymerase chain reaction, western blotting and enzyme-linked immunosorbent assay. RESULTS: IS suppressed the expression of differentiation marker genes without decreasing cell viability. IS decreased the mitochondrial DNA copy number and ATP levels by downregulating the genes pertaining to mitochondrial biogenesis (Ppargc1a, Nrf1, Tfam, Sirt1, and Mef2c), fusion (Mfn1 and Mfn2), oxidative phosphorylation (Cycs and Atp5b), and fatty acid oxidation (Pdk4, Acadm, Cpt1b, and Cd36). Furthermore, IS increased the intracellular mRNA and secretory protein levels of interleukin (IL)-6. Finally, UA ameliorated the IS-induced impairment in C2C12 cells. CONCLUSIONS: Our results indicated that UA improves the IS-induced impairment of mitochondrial biogenesis by affecting differentiation, ATP levels, and IL-6 secretion in C2C12 cells. Therefore, UA could be a novel therapeutic agent for CKD-induced muscle dysfunction.

Inhibitory Effects of Scrophulariae Radix on β-hexosaminidase release and cytokine production in RBL-2H3 cells (현삼(玄蔘) 추출물이 RBL-2H3 비만세포에서 β-hexosaminidase 및 cytokine 분비에 미치는 효과)

  • Kim, Se-Gie
    • The Korea Journal of Herbology
    • /
    • v.32 no.6
    • /
    • pp.9-15
    • /
    • 2017
  • Objectives : Traditional medicines isolated from natural products often have positive effects in the prevention and healing of various immune disorders, such as allergy and atopic inflammation. Scrophulariae Radix (SR) been used in oriental medicine used for treatment of acute and chronic inflammatory diseases. Mast cells are known to play important roles in the initiation of allergic reactions. In this study, we investigated the effects of SR ethanol extract on inflammatory responses in IgE-stimulated RBL-2H3 mast cells. Methods : Rat basophilic leukemia RBL-2H3 cells were purchased from Korean Cell Line Bank (KCLB No. 22256). Cell viability was measured by MTT assay. Assays for ${\beta}-Hexosaminidase$ Secretion : RBL-2H3 cells were sensitized with dinitrophenyl-ImmunoglobulinE (DNP IgE). The next antigen DNP-BSA ($25ng/m{\ell}$) was added for 10 minutes and the reaction was terminated after 5 minutes in the ice bath. To determine ${\beta}-Hexosaminidase$ release, supernatants were aliquoted into 96-well plates. Samples were mixed with substrate solution and incubated for 1 h at $37^{\circ}C$. Absorbance was measured with a spectrophotometer at 405 nm. IL-4 and tumor necrosis $factor-{\alpha}$($TNF-{\alpha}$) concentrations in cell culture supernatants were measured using enzyme-linked immunosorbent assay (ELISA) kits. Results : The cytotoxicity of SRE in RBL-2H3 cells was less than 5%. SRE inhibited DNP-IgE-imduced degranulation of mast cells in RBL-2H3 cells. Also significantly decreased the levels of inflammatory cytokine, IL-4 and TNF-alpha. In this study, the SRE showed potential anti-allergic and antiinflammatory. Conclusions : These results indicate that SRE could be inhibit the allergic response through suppressing the mast cell activation.

Saponin attenuates diesel exhaust particle (DEP)-induced MUC5AC expression and pro-inflammatory cytokine upregulation via TLR4/TRIF/NF-𝛋B signaling pathway in airway epithelium and ovalbumin (OVA)-sensitized mice

  • Jo, Sooyeon;Na, Hyung Gyun;Choi, Yoon Seok;Bae, Chang Hoon;Song, Si-Youn;Kim, Yong-Dae
    • Journal of Ginseng Research
    • /
    • v.46 no.6
    • /
    • pp.801-808
    • /
    • 2022
  • Background: Diesel exhaust particle (DEP) is a harmful kind of particulate matter known to exacerbate pre-existing respiratory diseases. Although their adverse effects on airway pathologies have been widely studied, the mechanistic analysis of signaling pathways and potential targets in reducing DEP-induced mucin secretion and pro-inflammatory cytokine production remain elusive. We, for the first time, investigated the effects of Korean Red Ginseng (KRG) extracts on mucin overproduction and airway inflammation induced by DEP. Methods: The effects of KRG and saponin on DEP-induced expression of MUC5AC and interleukin (IL)-6/8 were examined by real-time polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA) in human airway epithelial NCI-H292 cells. We conducted Western blotting analysis to analyze the associated signaling pathways. To evaluate the effects of saponin treatment on DEP-induced MUC5AC expression and inflammatory cell infiltrations in ovalbumin (OVA)-sensitized mice, immunohistochemical (IHC) staining and real-time PCR were implemented. Results: The KRG extracts markedly attenuated DEP-induced MUC5AC expression in vitro by inhibiting the TLR4/TRIF/NF-𝛋B pathway. Furthermore, KRG and saponin inhibited DEP-induced pro-inflammatory cytokine IL-6/8 production. The in vivo study revealed that saponin blocked DEP-induced inflammation, mucin production and MUC5AC expression. Conclusion: Our study revealed that KRG extracts have inhibitory effects on DEP-induced expression of MUC5AC and the production of pro-inflammatory cytokines. This finding provides novel insights into the mechanism by which saponin alleviates diesel-susceptible airway inflammation, elucidating its potential as a phytotherapeutic agent for inflammatory pathologies of airway.

Oxymatrine inhibits the pyroptosis in rat insulinoma cells by affecting nuclear factor kappa B and nuclear factor (erythroid-derived 2)-like 2 protein/heme oxygenase-1 pathways

  • Gao, Jingying;Xia, Lixia;Wei, Yuanyuan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.3
    • /
    • pp.165-174
    • /
    • 2022
  • As the mechanism underlying glucose metabolism regulation by oxymatrine is unclear, this study investigated the effects of oxymatrine on pyroptosis in INS-1 cells. Flow cytometry was employed to examine cell pyroptosis and reactive oxygen species (ROS) production. Cell pyroptosis was also investigated via transmission electron microscopy and lactate dehydrogenase (LDH) release. Protein levels were detected using western blotting and interleukin (IL)-1β and IL-18 secretion by enzyme-linked immunosorbent assay. The caspase-1 activity and DNA-binding activity of nuclear factor kappa B (NF-κB) and nuclear factor (erythroid-derived 2)-like 2 protein (Nrf2) were also assessed. In the high glucose and high fat-treated INS-1 cells (HG + PA), the caspase-1 activity and LDH content, as well as Nod-like receptor family pyrin domain containing 3, Gsdmd-N, caspase-1, apoptosis-associated speck-like protein containing a CARD, IL-1β, and IL-18 levels were increased. Moreover, P65 protein levels increased in the nucleus but decreased in the cytoplasm. Oxymatrine attenuated these effects and suppressed high glucose and high fat-induced ROS production. The increased levels of nuclear Nrf2 and heme oxygenase-1 (HO-1) in the HG + PA cells were further elevated after oxymatrine treatment, whereas cytoplasmic Nrf2 and Keleh-like ECH-associated protein levels decreased. Additionally, the elevated transcriptional activity of p65 in HG + PA cells was reduced by oxymatrine, whereas that of Nrf2 increased. The results indicate that the inhibition of pyroptosis in INS-1 cells by oxymatrine, a key factor in its glucose metabolism regulation, involves the suppression of the NF-κB pathway and activation of the Nrf2/HO-1 pathway.

Immune Enhancing Effects of Pyropia yezoensis Hydrothermal Extract in RAW 264.7 Cells (방사무늬 김 열수추출물의 RAW 264.7 세포에서의 면역 증진 효과)

  • Goeun Jang;Bo-Ram Park;Seul Ah Lee;Chun Sung Kim
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.33-40
    • /
    • 2023
  • This study aimed to investigate the immunomodulatory function of Pyropia yezoensis hydrothermal (water) extract (PYWE) in comparison to the group treated only with lipopolysaccharides (LPS) in RAW264.7 cells. LPS is known to be an inflammatory mediator that activates macrophages, leading to the secretion of nitric oxide (NO), inducible nitric oxide synthase (iNOS), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) as defense responses. Through enzyme-linked immunoassay and western blot analyses, it was observed that PYWE increased the expression levels of NO, iNOS, TNF-α, and IL-6 in RAW264.7 cells in a dose-dependent manner, although to a lesser extent compared with the group treated with LPS alone. In addition, the study examined the mitogen-activated protein kinases (MAPKs) pathway, which regulates various cellular activities, including gene expression, mitosis, cell differentiation, transformation, survival, and death. The western blot analysis confirmed that PYWE also regulated the MAPKs pathway. Furthermore, the expression levels of immunomodulatory-related factors increased in the group treated with PYWE compared with the control group. Even though the effects of PYWE were usually less strong than those of LPS, the effects of PYWE increased with increasing doses compared to the control group. This suggests that PYWE could be used to control the immune system.

Hepatitis B Virus-Induced TNF-a Expression in Hepa-lc1c7 Mouse Hepatoma Cell Line (마우스 Hepa-1c1c7 세포주에서 B형 간염 바이러스에 의한 tumor necrosis factor-a의 발현 유도)

  • Yea Sung Su;Jang Won Hee;Yang Young-Il;Lee Youn Jae;Kim Mi Seong;Seog Dae-Hyun;Park Yeong-Hong;Paik Kye-Hyung
    • Journal of Life Science
    • /
    • v.15 no.1 s.68
    • /
    • pp.38-44
    • /
    • 2005
  • Infection with hepatitis B virus (HBV) is a major health problem worldwide. Although a tremendous amount has been known about HBV, there have been obstacles in the study of HBV due to the narrow host range of HBV limited to humans and primates. In the present study, we investigated the susceptibility to HBV infection of mouse hepatoma cell line, Hepa-1c1c7. In addition, based on that human hepatocytes infected by HBV increase the expression of the pro-inflammatory cytokine TNF-a, the inducibility of TNF-a expression by HBV in the cells was determined. HBV surface antigen (HBsAg) secretion was measured by the microparticle enzyme immunoassay and steady state mRNA expression was analyzed by quantitative competitive RT-PCR. Transient transfection of Hepa-1c1c7 cells with HBV expression vector resulted in a dose-dependent induction of TNF-a expression. Infection of Hepa-1c1c7 cells with the serum of HBV carrier also increased TNF-a mRNA expression. Both in the transfected and infected cells, HBV mRNA was expressed and significant HBsAg secretion was detected. There was no significant variation in $\beta-actin$ mRNA expression by HBV. These results demonstrate that HBV is infectious to Hepa-lc1c7 in vitro and the viral infection induces TNF-a expression, which suggests that Hepa-lc1c7, a mouse hepatoma cell line, may be a possible model system for analysis of various molecular aspects of HBV infection.