• Title/Summary/Keyword: enzyme resource

Search Result 189, Processing Time 0.031 seconds

Physiochemical Properties, and Antioxidative and Alcohol-metabolizing Enzyme Activities of Nectarine Vinegar (천도복숭아 식초의 이화학적 특성과 항산화 및 알코올 대사 효소 활성)

  • Jung, Kyung Im;Jung, Han Nah;Ha, Na Yeon;Choi, Young Ju
    • Journal of Life Science
    • /
    • v.28 no.10
    • /
    • pp.1193-1200
    • /
    • 2018
  • This study investigated the physiochemical properties, antioxidative, nitrite-scavenging, and alcohol metabolism enzyme activities of nectarine vinegar prepared by a traditional fermentation method. The pH of nectarine vinegar was 3.70, the sugar content was $8.87^{\circ}Brix$, and the total acidity was 6.29%. Among organic acids detected, acetic acid was highest at 32.42 mg/ml, followed by lactic acid, malic acid, and succinic acid. Total phenol content of the nectarine vinegar was $121.84{\mu}g$ tannic acid equivalents (TAE)/100 ml. The antioxidative effects of muskmelon vinegar were measured using 1,1-Diphenyl2-picrylhydrazy (DPPH) radical-scavenging activity and superoxide dismutase (SOD) assay. DPPH of nectarine vinegar was increased in a dose-dependent manner, which was 84.47% at 40% concentration. SOD activity was increased in a dose-dependent manner, which was 89.06% at 60% concentration. Nitric scavenging activities of nectarine vinegar were 94.17%, 76.91%, and 20.21% at pH values 1.2, 3.0, and 6.0 at 100% concentration, respectively. The effects of nectarine vinegar on alcohol-metabolism were determined by measuring the generation of reduced nicotinamide adenine dinucleotide (NADH) by alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH). ADH and ALDH activities of nectarine vinegar were increased in a dose-dependent manner, which were 153.61% and 178.20 % at 60% concentration, respectively. These results suggest that nectarine vinegar has great potential as a resource for high quality functional health beverages.

Component Analysis and Digestive Enzyme Activities of Fermented Crataegi Fructus Extracts (산사 발효액의 함유 성분 분석 및 소화 활성)

  • Park, Sung-Jin;Rha, Young-Ah
    • Culinary science and hospitality research
    • /
    • v.19 no.5
    • /
    • pp.136-145
    • /
    • 2013
  • Currently many studies aimed at enhancing efficacy of medicinal food on biological activity using bioconversion technology including fermentation process. In this study, the quality characteristics and antioxidative activity of fermented Crataegi fructus was investigated. The antioxidant activity of fermented Crataegi Fructus was assessed by various radical scavenging assays using DPPH (2,2-Diphenyl-1-picrylhydrazyl), FRAP (Ferric ion reducing antioxidant power), Reducing power and ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)). Moisture content of fermented Crataegi Fructus was $39.3{\pm}0.06%$. Contents of crude ash, crude protein, and crude fat were $0.20{\pm}0.01$, $1.77{\pm}0.04$, and $1.40{\pm}0.59%$, respectively. Moreover, the hunter's color values of fermented Crataegi Fructus were 79.24 (lightnees), 1.58 (redness), and 31.25 (yellowness), respectively. Total phenolic contents of fermented Crataegi Fructus were $3,015{\pm}250$ GAE ${\mu}g/g$. The antioxidative activities of fermented Crataegi Fructus significantly increased in a dose dependent manner. In addition, fermented Crataegi Fructus slightly (10.4%) inhibited ${\alpha}$-glucosidase activity; however, there was no inhibitory activity against ${\alpha}$-amylase. In terms of proteolytic activity, fermented Crataegi Fructus showed a strong activity than pancreatin (used as a positive control). These results indicate that fermented Crataegi Fructus can be used as a natural resource for material aiding digestion.

  • PDF

Resource of Food Waste using Indigenous Bacteria Isolated from Soils (토양으로부터 분리한 토착유효미생물을 이용한 음식물쓰레기의 자원화)

  • Lee, Sang-Woo;Ham, Sun Nyeoo;Shin, Taek-Soo;Kim, Hye-Kyung;Yeon, Ik-Jun;Kim, Kawng-Yul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.1
    • /
    • pp.35-41
    • /
    • 2009
  • This study was conducted to investigate feasibility of feedstuff for animal using food waste by fermentation mechanism of indigenous microorganism. To achieve this purpose, indigenous bacteria was isolated from soils to use as an inoculant. Enzyme test was performed to verify activity of amylase, protease and lipase using isolated bacteria. Bacteria(H1, D1), which vigorously express the enzyme activity, was selected and used in the fermentation experiments of food waste. From the analysis of 16s rDNA sequencing, H1 and D1 were identified as Bacillus subtilis and Paenibacillus polymyxa, respectively. In the fermentation experiment, food waste was mixed with rice bran and popped rice to control moisture and nutrient content. Isolated bacteria(B. subtilis and P. polymyxa) was used as an inoculant. From the measured data such as temperature, pH and ORP, it can be verified that food waste adding the indigenous bacteria was effectively fermented. From the nutritional analysis of manufactured feedstuff, it showed that the contents of crude protein, crude fat and crude fiber were enough to use as feedstuff for animal. In addition, harmful components such as Pb, Hg, Cd, aflatoxin and salmonella concentration were not exceeded permitted standards. Therefore, fermented food waste using indigenous bacteria can be used as feedstuff.

Antioxidant and Inhibitory Activities on Angiotensin Converting Enzyme in Lysimachia clethroides Duby (큰까치수영의 항산화 및 안지오텐신 전환 효소 저해 활성)

  • Bang, Jin-Ki;Seong, Nak-Sul;Lee, Seung-Eun
    • Applied Biological Chemistry
    • /
    • v.47 no.2
    • /
    • pp.265-269
    • /
    • 2004
  • This study was conducted to develop physiologically active plant materials from medicinal plants. Crude extracts and solvent fractions prepared from Lysimachia cletroides Duby were tested for their antioxidant and antihypertensive activities. For ellucidating antioxidant potential, inhibition rate on linoleic acid peroxidation, as well as scavenging activities on superoxide anion and 1,1-dipicrylphenylhydrazyl (DPPH) radical were evaluated. For analyzing antihypertensive effect, inhibitory activity on angiotensin converting enzyme (ACE) was done. Methanol extract of L. cletroides showed potent inhibition activity of 83% on linoleic acid peroxidation, which was more effective than -2% of ${\alpha}-tocopherol$ at $25\;{\mu}g/ml$. Methanol and water extracts exhibited strong scavenging activities of $86{\sim}109%$ and $96{\sim}122%$ on superoxide anion radical which was higher than $-4{\sim}69%$ of ascorbic acid at $5{\sim}200\;{\mu}g/ml$. Hexane, ether and ethylacetate fractions possessed 133, 100 and 88% inhibitory activities on ACE at $4,000\;{\mu}g/ml$, respectively. From the results, it was expected that Lysimachia cletroides could be a new antioxidant and antihypertensive resource.

The Antioxidant, Alcohol Metabolizing Enzyme, and Hepatoprotective Activities of Dendropanax morbifera Vinegar with Traditional Fermentation Methods (전통적인 발효 방법으로 제조한 황칠 식초의 항산화, 알코올 대사 효소 및 간보호 활성)

  • Jung, Kyung Im;Jung, Han Nah;Choi, Young Ju
    • Journal of Life Science
    • /
    • v.32 no.4
    • /
    • pp.290-297
    • /
    • 2022
  • This study was performed to investigate the organic acids, alcohol metabolism enzyme, and antioxidative, nitrite-scavenging, and hepatoprotective effects of Dendropanax morbifera vinegar prepared by a traditional fermentation method. Among the organic acids detected, acetic acid was the highest found, at 91.72 mg/ml, followed by lactic acid (7.31 mg/ml), malic acid (1.36 mg/ml), and succinic acid (1.20 mg/ml). The total polyphenol content of the D. morbifera vinegar was 13.73 ㎍ tannic acid equivalent (TAE)/ml. The 1,1-Diphenyl-2-picrylhydrazy (DPPH) radical scavenging activity of D. morbifera vinegar was 76.04% at a 60% concentration. The superoxide dismutase (SOD) activity of D. morbifera vinegar was increased in a dose-dependent manner, which was 95.14% at a 60% concentration, while the α-glucosidase inhibitory activity of D. morbifera vinegar was 98.94% at a 10% concentration. The effects of D. morbifera vinegar on alcohol metabolism were determined by measuring the generation of reduced nicotinamide adenine dinucleotide (NADH) by alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH). The ADH and ALDH activities of D. morbifera vinegar were increased in a dose-dependent manner, 43.62% and 60.39% at a 60% concentration, respectively. The D. morbifera vinegar showed significant protective effects against tacrine-induced cytotoxicity in HepG2 cells at the 0.6% concentration. These results suggest that D. morbifera vinegar has great potential as a resource for high quality functional health beverages.

A Recent Insight into the Diagnosis and Screening of Patients with Fabry Disease (파브리병 환자의 진단과 선별검사의 최신지견)

  • Hye-Ran Yoon;Jihun Jo
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.24 no.1
    • /
    • pp.17-25
    • /
    • 2024
  • Fabry disease (FD) is an X-linked lysosomal storage disorder. It is caused by mutations in the α-galactosidase A gene, which results in deficient or absent activity of α-galactosidase A (α-Gal A). This leads to a progressive accumulation of globotriaosylceramide (Gb3) in various tissues. Manifestations of Fabry disease include serious and progressive impairment of renal and cardiac function. In addition, patients experience pain, gastrointestinal disturbance, transient ischaemic attacks, and strokes. Additional effects on the skin, eyes, ears, lungs, and bones are often seen. Reduced life expectancy and deadly consequences are being caused by cardiac involvement. Chaperone therapy or enzyme replacement therapy (ERT) are two disease-specific treatments for FD. Thus, early detection of FD is critical for decreasing morbidity and mortality. Globotriaosysphingosine (lyso-Gb3) for identifying atypical FD variants and highly sensitive troponin T (hsTNT) for detecting cardiac involvement are both significant diagnostic indicators. This review aimed to offer a basic resource for the early diagnosis and update on the diagnosis of having FD. We will also provide a general diagnostic algorithm and information on ERT and its accompanying treatments.

  • PDF

Effects of Maternal Exposure to Xenoestrogens on the Steroidogenesis in Mouse Testis of Male Offspring

  • An, Su-Yeon;Lee, Hoon-Taek;Kim, Suel-Kee;Yoon, Yong-Dal;Lee, Ho-Joon
    • Proceedings of the KSAR Conference
    • /
    • 2003.06a
    • /
    • pp.31-31
    • /
    • 2003
  • The incidence of reproductive abnormalities in the male has been reported to have increased during the past 50 years. These changes may be attributable to the presence of chemical with oestrogenic activity in our environment. Present study was carried out to determine the effects of maternal exposure to xenoestrogens on the testicular development and on the transcriptional expression of the steroidogenic enzyme and subunits of inhibin/activin in testis of male offspring. Pregnant female mice were administrated with 4-tert-octylphenol (OP; 2, 20, 200mg/kg), Bisphenol A (BPA; 2, 20, 200$\mu\textrm{g}$/kg), $\beta$-estradiol 17-valerate (EV; 2$\mu\textrm{g}$/kg) or vehicle (CV; corn oil) during gestational days 11 to 17. Offsprings were sacrificed on gestational day 18 (fetal 18) and neonatal day 7. Body weights were significantly increased in groups treated with all doses of OP and BPA. Maximum seminiferous tubules diameter on gestational day 18 were not changed in any treatment group, however, they were significantly increased on the neonatal day 7 in the group treated with low-dose of OP (2 mg/kg) and BPA (2 $\mu\textrm{g}$/kg). Increased expression of the P450$_{17a}$-hydroxylase dehydrogenase (P450$_{17a}$), 3$\beta$-hydroxylase dehydrogenase (3$\beta$-HSD), and 17$\beta$-hydroxylase dehydrogenase (17$\beta$-HSD) on gestational day 18 were observed in the groups treated with 2 or 20 mg/kg of OP. However, expression of the steroidogenic enzymes were not changed in the groups treated with all the doses of BPA. In contrast with the results from fetal testis, no expressional changes of these enzymes was found in all the OP-treated group and increased expression of inhibin/activin $\beta$B subunit mRNA were obseued in the 200 $\mu\textrm{g}$/kg BPA-treated group in the neonatal day 7. These results suggest that gestational exposure to low level of xenoestrogen causes a stimulatory effects on the transcriptional expressions of steroidogenic enzymes and subunits of inhibin/activin and on the seminiferous tubule development by their estrogen-like actions.ons.

  • PDF

Construction and Characterization of Vitreoscilla Hemoglobin (VHb) with Enhanced Peroxidase Activity for Efficient Degradation of Textile Dye

  • Zhang, Zidong;Li, Wei;Li, Haichao;Zhang, Jing;Zhang, Yuebin;Cao, Yufeng;Ma, Jianzhang;Li, Zhengqiang
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.9
    • /
    • pp.1433-1441
    • /
    • 2015
  • Pollution resulting from the discharge of textile dyes into water systems has become a major global concern. Because peroxidases are known for their ability to decolorize and detoxify textile dyes, the peroxidase activity of Vitreoscilla hemoglobin (VHb) has recently been studied. It is found that VHb and variants of this enzyme show great promise for enzymatic decolorization of dyes and may play a role in achieving their successful removal from industrial wastewater. The level of VHb peroxidase activity correlates with two amino acid residues present within the conserved distal pocket, at positions 53 and 54. In this work, sitedirected mutagenesis of these residues was performed and resulted in improved VHb peroxidase activity. The double mutant, Q53H/P54C, shows the highest dye decolorization and removal efficiency, with 70% removal efficiency within 5 min. UV spectral studies of Q53H/P54C reveals a more compact structure and an altered porphyrin environment (λSoret = 413 nm) relative to that of wild-type VHb (λSoret = 406), and differential scanning calorimetry data indicate that the VHb variant protein structure is more stable. In addition, circular dichroism spectroscopic studies indicate that this variant's increased protein structural stability is due to an increase in helical structure, as deduced from the melting temperature, which is higher than 90℃. Therefore, the VHb variant Q53H/P54C shows promise as an excellent peroxidase, with excellent dye decolorization activity and a more stable structure than wild-type VHb under high-temperature conditions.

Physiological activity of methanol extract and fractions from Citrus grandis Osbeck pericarp (당유자 과피 메탄올 추출물 및 분획물의 생리활성 검정)

  • Ko, Hyun Min;Kim, Ju-Sung
    • Journal of Plant Biotechnology
    • /
    • v.45 no.3
    • /
    • pp.279-286
    • /
    • 2018
  • Citrus grandis Osbeck pericarp is used as tea, herbal medicine, etc., but is not commercialized in various ways. So, in this study, we identified potential for use of Citrus grandis Osbeck as health functional foods, cosmetics and food preservatives. Methanol extract of Citrus grandis Osbeck pericarp was fractionated with hexane, dichloromethane, ethyl acetate and butanol, to quantitatively analyze total phenol and flavonoid, and investigate antioxidative and enzyme inhibitory activities. Total phenol and flavonoid contents were highest in ethyl acetate fraction, FRAP and ORAC results also revealed highest activity in proportion to total phenol content. DPPH radical scavenging activity revealed that ethyl acetate, butanol and dichloromethane fraction manifested highest activity without significant difference. However, dichloromethane fraction revealed higher TEAC value and tyrosinase inhibitory activity than ethyl acetate fraction, and hexane fraction manifested best results with superoxide radical scavenging activity and ${\alpha}-glucosidase$ inhibitory activity. Antimicrobial activity also revealed best effect in dichloromethane and hexane fractions. So, based on the following results, use of dichloromethane fraction as material of natural functional cosmetics, ethyl acetate fraction for health functional foods, and hexane fractions for pharmaceuticals and food preservatives, would be most practical for product development.

Synthesis of L-threo-3,4-Dihydroxyphenylserine(L-threo-DOPS) with Thermostabilized Low-Specific L-Threonine Aldolase from Streptomyces coelicolor A3(2)

  • Baik, Sang-Ho;Yoshioka, Hideki;Yukawa, Hideaki;Harayama, Shigeaki
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.5
    • /
    • pp.721-727
    • /
    • 2007
  • Stability-enhanced mutants, H44, 11-94, 5A2-84, and F8, of L-threonine aldolase(L-TA) from Streptomyces coelicolor A3(2)(SCO1085) were isolated by an error-prone PCR followed by a high-throughput screening. Each of these mutant, had a single amino acid substitution: H177Y in the H44 mutant, A169T in the 11-94 mutant, D104N in the 5A2-84 mutant and F18I in the F8 mutant. The residual L-TA activity of the wild-type L-TA after a heat treatment for 20 min at $60^{\circ}C$ was only 10.6%. However, those in the stability-enhanced mutants were 85.7% for the H44 mutant, 58.6% for the F8 mutant, 62.1% for the 5A2-84 mutant, and 67.6% for the 11-94 mutant. Although the half-life of the wild-type L-TA at $63^{\circ}C$ was 1.3 min, those of the mutant L-TAs were longer: 14.6 min for the H44 mutant, 3.7 min for the 11-94 mutant, 5.8 min for the 5A2-84 mutant, and 5.0 min for the F8 mutant. The specific activity did not change in most of the mutants, but it was decreased by 45% in the case of mutant F8. When the aldol condensation of glycine and 3,4-dihydroxybenzaldehyde was studied by using whole cells of Escherichia coli containing the wild-type L-TA gene, L-threo-3,4-dihydroxyphenylserine(L-threo-DOPS) was successfully synthesized with a yield of 2.0 mg/ml after 20 repeated batch reactions for 100 h. However, the L-threo-DOPS synthesizing activity of the enzyme decreased with increased cycles of the batch reactions. Compared with the wild-type L-TA, H44 L-TA kept its L-threo-DOPS synthesizing activity almost constant during the 20 repeated batch reactions for 100 h, yielding 4.0 mg/ml of L-threo-DOPS. This result showed that H44 L-TA is more effective than the wild-type L-TA for the mass production of L-threo-DOPS.