• Title/Summary/Keyword: enzyme property

Search Result 214, Processing Time 0.034 seconds

Anti-Inflammatory Effects of Rice Bran Ethanol Extract in Murine Macrophage RAW 264.7 Cells (미강에탄올추출물의 RAW264.7 세포에서 항염증효과)

  • Park, Jeong-Suk;Kim, Mi-Hye
    • YAKHAK HOEJI
    • /
    • v.55 no.6
    • /
    • pp.456-461
    • /
    • 2011
  • The aim of the present study is to investigate the anti-inflammatory effect of a Rice Bran Ethanol Extract (RBE). Inflammation, such as a bacterial infection in vivo metabolites, such as external stimuli or internal stimuli to the defense mechanisms of the biological tissue a variety of intracellular regulatory factors deulin inflammatory TNF-${\alpha}$, IL-$1{\beta}$, IL-6, IL-8, such as proinflammatory cytokines, prostagrandin, lysosomal enzyme, free radicals are involved in a variety of mediators. The present study was designed to determine the effect of the RBE on pro-inflammatory factors such as NO, iNOS expression and TNF-${\alpha}$, IL-$1{\beta}$, IL-6 in lipopolysaccharide (LPS) - stimulated RAW264.7 macrophages cells. The cell toxicity was determined by MTS assay. To evaluate of anti-inflammatory effect of RBE, amount of NO was measured using the NO detection kit and the iNOS expression was measured by reverse transcriptase polymerase chain reaction (RT-PCR). And proinflammatory cytokines were measured by ELISA kit. As a result, the RBE reduced NO, iNOS expression and TNF-${\alpha}$, IL-$1{\beta}$, IL-6 production without cytotoxicity. Our results suggest that the RBE may have an anti-inflammatory property through suppressing inflammatory mediator productions and appears to be useful as an anti-inflammatory material.

Improving Endoglucanase Activity by Adding the Carbohydrate-Binding Module from Corticium rolfsii

  • Tang, Zizhong;Chen, Hui;Chen, Lijiao;Liu, San;Han, Xueyi;Wu, Qi
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.4
    • /
    • pp.440-446
    • /
    • 2014
  • The carbohydrate-binding module (CBM) is an important domain of most cellulases that plays a key role in the hydrolysis of cellulose. The neutral endoglucanase (EG1) gene was reconstructed. A redesigned endoglucanase, named EG2, was constructed with a CBM containing a linker from Corticium rolfsii (GenBank Accession No. D49448). The redesigned EG genes were expressed in Escherichia coli, and their characteristics are discussed. Results showed that the degradation of cellulose by EG2 was about double that by EG1. The specific activities of EG1 and EG2 were tested under optimal conditions, and EG2 had higher activity ($169.1{\pm}2.74$ U/mg) toward CMC-Na than did EG1 ($84.0{\pm}1.98$) in the process of cellulose degradation. The optimal pH and temperature, pH stability, and heat stability of EG1 and EG2 were similar. Results indicated that the CBM plays an essential role in the hydrolysis of cellulose. We can improve EG's catalytic power by adding the CBM from Corticium rolfsii.

Characterization of Chloroanilines-degrading Bacteria Isolated from Seaside Sediment (연안 갯벌에서 분리한 Chloroaniline 화합물 분해 미생물의 특징)

  • Kang, Min-Seung;Kim, Young-Mog
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.40 no.5
    • /
    • pp.282-287
    • /
    • 2007
  • Chloroanilines are aromatic amines used as intermediate products in the synthesis of herbicides, azo-dyes, and pharmaceuticals. 3,4-dichloroaniline (DCA) is the degradation product of some herbicides (diuron, propanil, and linuron) and of trichlorocarbanilide, a chemical used as an active agent in the cosmetic industry. The compound, however, is considered a potential pollutant due to its toxicity and recalcitrant property to humans and other species. With the increasing necessity for bioremediation, we sought to isolate bacteria that degraded 3,4-DCA. A bacterium capable of growth on 3,4-DCA as the sole carbon source was isolated from seaside sediment using a dilution method with a culture enriched in 3,4-DCA. The isolated strain, YM-7 was identified to be Pseudomonas sp. The isolated strain was also able to degrade other chloroaniline compounds. The isolated strain showed a high level of catechol 2,3-dioxygenase activity on exposure to 3,4-DCA, suggesting that this enzyme is an important factor in 3,4-DCA degradation. The activity toward 4-methylcatechol was 53.1% that of catechol, while the activity toward 3-methylcatechol, 4-chlorocatechol and 4,5-chlorocatechol was 18.1, 33.1, and 6.9%, respectively.

Enzymatic Production of Structured Lipids from Capric Acid and Conjugated Linoleic Acid in Soybean Oil

  • Shin, Jung-Ah;Lee, Ki-Teak
    • Proceedings of the Korean Society of Postharvest Science and Technology of Agricultural Products Conference
    • /
    • 2003.10a
    • /
    • pp.164.1-164
    • /
    • 2003
  • In this study, medium-chain fatty acid (MCFA) metabolized in the liver for quick energy and CLA exhibited biological activity were used for synthesis of structured lipids (SLs). SLs were synthesized by acidolysis of soybean oil, capric acid (C10:0) and CLA with Chirazyme L-2 lipase as biocatalysts. The effect of enzyme load (2, 4, 6, 8, 10% w/w substrates) was investigated. Production of SL (scale-up) was performed with a 1:2:2 molar ratio (oi1/C10:0/CLA) for 24 h at 55$^{\circ}C$ in a stirred batch reactor (420 rpm). The reaction was catalyzed by Chirazyme L-2 lipase (24.48g, 4% w/w substrates). The scale-up result showed that capric acid and total CLA were incorporated 4.9%, 4.1% (mole%), respectively, in soybean oil. Then, physio-chemical property and flavor characteristic of produced SL-soybean oil were analyzed. Therefore, SL-soybean oil containing C10:0 and CLA was successfully synthesized and may be beneficial in desirable food and nutritional applications.

  • PDF

Electrochemical Properties of Polypyrrole/ Glucose Oxidase Enzyme Electrode (Polypyrrole/Glucose Oxidase 효소전극의 전기화학적 특성)

  • 김현철;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.357-361
    • /
    • 1999
  • GOD electrochemically immobilized in PPy/GOD complex have an effect on redox properties of the complex. In the cyclicvoltammetry, GOD shows the redox reaction at the potential below -0.6Y vs. Ag/AgCI. That leads to new peaks in the cyclicvoltammograms in additional to typical PPy peaks. The pH of electrolyte solution during potential swing decreased to 4.4, and then increased to 10. That suggests the redox of GOD for the cycling. As the concentration of GOD was increased, the anodic wave of the new peaks was strong as much as increased. GOD obstructs the diffusion of electrolyte anion because of its net chain. Insulating property of GOD is cause that it made the faradic impedance of complex large in charge transfer. It suggests that increase of the concentration of GOD be against electrochemical coupling. Therefore, the concentration of GOD and electrochemical coupling should be dealt with each other. The apparent Michaelis-lenten constant ( K\`$_{M}$ ) was determined by 30.7 mmol d $m^{-3}$ fur the PPy/GOD complex. The value is of the same order of magnitude as that for soluble glucose oxidase from Aspergillus Niger.r.

  • PDF

Direct treatment on live and cancer cells & process innovation of bio-sensor using atmospheric pressure plasma system with low-temperature arc-free unit

  • Lee, Keun-Ho;Lee, Hae-Ryong;Jun, Seung-Ik;Bahn, Jae-Hoon;Baek, Seung-J.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.43-43
    • /
    • 2010
  • We have characterized the parametric and functional properties of live cell and cancer cell according to plasma treatment conditions using Atmospheric Pressure (AP) Plasma with uniquely designed low temperature arc-free unit. AP plasma system showed very highly efficient capabilities of reacting and interfacing directly with live and cancer cells. The parametric results with the types of gases, applied power, applied gap, and process times on cells will be presented in accordance with functional studies of the works. The growth of cancer cells is directly influenced by AP plasma exposure with evaluating plasma conditions in several human cancer cells and understanding how plasma exposure alters molecular signaling pathways. The cells exhibit a slower or faster growth rates compared with untreated cells, depending on the cell types. These results strongly support the conclusion that alterations in one or more of each gene are responsible, at least in part, for plasma-induced apoptosis in cancer cells. In addition, it also will be presented that AP plasma has an important role for the improvement of sensor performance due to excellent interface property between enzyme and metal electrode for bio sensor manufacturing process.

  • PDF

The Neuroprotective Effects of Carnosine in Early Stage of Focal Ischemia Rodent Model

  • Park, Hui-Seung;Han, Kyung-Hoon;Shin, Jeoung-A;Park, Joo-Hyun;Song, Kwan-Young;Kim, Doh-Hee
    • Journal of Korean Neurosurgical Society
    • /
    • v.55 no.3
    • /
    • pp.125-130
    • /
    • 2014
  • Objective : This study was conducted to elucidate neuroprotective effect of carnosine in early stage of stroke. Methods : Early stage of rodent stroke model and neuroblastoma chemical hypoxia model was established by middle cerebral artery occlusion and antimycin A. Neuroprotective effect of carnosine was investigated with 100, 250, and 500 mg of carnosine treatment. And antioxidant expression was analyzed by enzyme linked immunosorbent assay (ELISA) and western blot in brain and blood. Results : Intraperitoneal injection of 500 mg carnosine induced significant decrease of infarct volume and expansion of penumbra (p<0.05). The expression of superoxide dismutase (SOD) showed significant increase than in saline group in blood and brain (p<0.05). In the analysis of chemical hypoxia, carnosine induced increase of neuronal cell viability and decrease of reactive oxygen species (ROS) production. Conclusion : Carnosine has neuroprotective property which was related to antioxidant capacity in early stage of stroke. And, the oxidative stress should be considered one of major factor in early ischemic stroke.

Wheat Quality and Its Effect on Bread Staling

  • Lee, Mee-Ryung;Lee, Won-Jae
    • Journal of agriculture & life science
    • /
    • v.46 no.1
    • /
    • pp.153-161
    • /
    • 2012
  • Wheat is a very popular crop in all over the world due to the various use of wheat flour as staple foods, such as bread. As many food products are made from wheat, the property of wheat can be a determinant of the quality of final food products. Staled bread is not harmful to health but is normally rejected by consumers due to the absence of desirable sensory attributes. The phenomena of staling can be increased hardness of bread, the migration of moisture from center of bread to the crust of bread, loss of flavor and etc. The exact mechanism of staling has not been established completely. To delay or prevent staling, either addition of anti-staling agent, such as surfactant and enzyme or modification of wheat component, such as wheat starch has been adapted. The development of waxy wheat made it possible to reconstitute the starch component in bread. When the content of amylopect in was increased in bread, the loss of moisture was decreased and the reduction in softness of bread was decreased during storage. Increased retrogradation of starch did not always accompany the staling of bread indicating that the retrogradation of starch may not be a single indicator of bread staling. To find out the exact relationship between bread staling and starch retrogradation, further research is necessary.

Physiological and Whitening Effects of Morus alba Extracts

  • Gug, Kyungmee
    • Journal of Integrative Natural Science
    • /
    • v.5 no.1
    • /
    • pp.46-52
    • /
    • 2012
  • Mulberry extracts can be incorporated into skin-whitening products. The compound attributed to lighten the skin is arbutin, a form of hydroquinone that inhibits melanin release by suppressing the tyrosinase enzyme. For the cosmetic applications, the physiological effects of mulberry (Morus alba) extracts were investigated. The water soluble fraction of mulberry contains higher amount of protein (16.28~4.47%) in contrast to fat (1.55~1.41%). In addition, the fraction abundantly contains succinic acid (972.4-275.8 mg/g) and phosphoric acid (1,628.4-121.9 mg/g) in different parts of mulberry. The free radical scavenging ability in water soluble fraction was found to display remarkable effects in comparison with methanol and ethyl acetate fraction. The ethyl acetate-soluble of root and leaf showed remarkable tyrosinase inhibition activity by IC 50 (${\mu}g/ml$). The anticancer activity of methanol fraction obtained from mulberry using human cancer cell lines showed growth inhibition effect (270.14 mg/ml in Calu-6 cells, 295.29 mg/ml in HCT-116, and 332.29 mg/ml in MCF-7 cells, respectively). Based on the results, Morus alba extracts include cosmetic ingredients with antioxidizing and whitening properties.

Enzymatic Hydrolysis of Yellowfin Sole Skin Gelatin in a Continuous Hollow Fiber Membrane Reactor (연속식 중공사막 반응기를 이용한 각시가자미피 젤라틴의 가수분해)

  • KIM Se-Kwon;BYUN Hee-Guk;KANG Tae-Jung;SONG Dae-Jin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.26 no.2
    • /
    • pp.120-132
    • /
    • 1993
  • A continuous hollow fiber membrane reactor(CHFMR) was developed and optimized for the production of yellowfin sole(Limanda aspera) skin gelatin hydrolysates using trypsin. The results were summerized as follows: The $K_m$ value of the CHFMR was 2.4 times higher than that of the batch reactor, indicating reduced enzyme affinity for the substrate. The $K_2$ value of the CHFMR was 8.5 times lower than that of the batch process, showing a significant reduction in trypsin activity in the CHFMR. The optimum operating conditions for the CHFMR process were $55^{\circ}C$, pH 9.0, flux 7.79 ml/min, residence time 77min, and trypsin to substrate ratio, 0.01(w/w) After operating for 60min under the above conditions, $79\%$ of the total amount of initial gelatin was hydrolysed. Enzyme leakage was observed through the 10,000 MWCO membrane after the 20min of reactor operation, while none occurred after 5hr. Total enzyme leakage was about $12.95\%$ at $55^{\circ}C$ for 5hrs. However, there was no apparent correlation between enzyme leakage and substrate hydrolysis. The membrane has a significant effect on trypsin activity loss for 60min of the CHFMR operation. The CHFMR operating with the membrane lost $34\%$ of the initial activity versus a $23\%$ loss of activity after 3hr in the continuous reactor lacking the hollow fiber membrane. The measurement of fouling property showed that relative flux reduction was $91\%$ and flux recover rate was $92\%$ at $10\%$ substrate solution. The productivity(378.85mg product/mg enzyme) of the CHFMR was more than 4 times higher than that of the batch reactor at $55^{\circ}C$.

  • PDF