• Title/Summary/Keyword: enzyme preparations

Search Result 114, Processing Time 0.034 seconds

Improving Effect of Silk Peptides on the Cognitive Function of Rats with Aging Brain Facilitated by D-Galactose

  • Park, Dong-Sun;Lee, Sun-Hee;Choi, Young-Jin;Bae, Dae-Kwon;Yang, Yun-Hui;Yang, Go-Eun;Kim, Tae-Kyun;Yeon, Sung-Ho;Hwang, Seock-Yeon;Joo, Seong-Soo;Kim, Yun-Bae
    • Biomolecules & Therapeutics
    • /
    • v.19 no.2
    • /
    • pp.224-230
    • /
    • 2011
  • In order to develop silk peptide (SP) preparations possessing cognition-enhancing effect, several candidates were screened through in vitro assays, and their effectiveness was investigated in facilitated brain aging model rats. Incubation of brain acetyl-cholinesterase with SP-PN (1-1,000 ${\mu}g/ml$) led to inhibition of the enzyme activity up to 35%, in contrast to a negligible effect of SP-NN. The expression of choline acetyltransferase (ChAT) mRNA of neural stem cells expressing ChAT gene (F3.ChAT) was increased by 24-hour treatment with 10 and 100 ${\mu}g/ml$ SP-NN (1.35 and 2.20 folds) and SP-PN (2.40 and 1.34 folds). Four-week subcutaneous injections with D-galactose (150 mg/kg) increased activated hippocampal astrocytes to 1.7 folds (a marker of brain injury and aging), decreased acetylcholine concentration in cerebrospinal fluid by 45-50%, and thereby impaired learning and memory function in passive avoidance and water-maze performances. Oral treatment with SP preparations (50 or 300 mg/kg) for 5 weeks from 1 week prior to D-galactose injection exerted recovering activities on acetylcholine depletion and brain injury/aging as well as cognitive deficit induced by D-galactose. The results indicate that SP preparations restore cognitive functions of facilitated brain aging model rats by increasing the release of acetylcholine, in addition to neuroprotective activity.

Effects of Subchronic Treatment with $AT_{1}$ Receptor Antagonists on Endothelium-dependent and -independent Relaxatio

  • Lee, Byung-Ho
    • Archives of Pharmacal Research
    • /
    • v.19 no.5
    • /
    • pp.390-395
    • /
    • 1996
  • To investigate whether $AT_{1}$ receptor antagonists are acting by increasing endothelium-de-pendent and -independent relaxation of aortas in normotensive rats, $AT_{1}$ receptor antagonists, losartan and KR-30988, and angiotensin converting enzyme inhibitor, captopril, were orally administered for two weeks (50 mg/kg, b.i.d.). THe blood pressure, heart rate and body weight were not significantly changed by losartan, KR-30988 and captopril compared to the control group. In aortic preparations, the $pD_{2}$ of KR-30988 for ACh-induced relaxation was 8.33 $\pm$ 0.16, significantly (p <0.05) lower than that of control group $(7.71 \pm 0.15)$. ACh-induced relaxation was significantly increased on losartan-treated group (p<0.01) at $10^{-6}$ M of ACh, and in captopril-treated group (p<0.05) at the range of $10^{-7}$ -$10^{-5}$ M of ACh. The $pD_{2}$ values for histamine-induced relaxatio of losartan, KR-30988 and captopril were 5.57 $\pm$ 0.10, 5.85 $\pm$ 0.21 and 5.60 $\pm$ 0.01, respectively, with significant differences in all groups (p<0.01) compared to that of control group (5.13 $\pm$ 0.09). ACh-induced relaxations of aortic preparations were not changed by pretreatment of indomethacin ($10_{-5}$ M), and completely bolcked by pretreatment of L-NAME $(10_{-5}M)$ in all groups. Sodium nitroprusside-induced relaxations were not significantly changed by all drugs tested in this experiments. These results suggest that $AT_{1}$ receptor antagonists, losartan and KR-30988, enhance the endothelium-dependent relaxatio on aortic preparations through the release of, or increase sensitivity, to nitric oxide in nor-motensive rats.

  • PDF

Fabry disease: current treatment and future perspective

  • Han-Wook Yoo
    • Journal of Genetic Medicine
    • /
    • v.20 no.1
    • /
    • pp.6-14
    • /
    • 2023
  • Fabry disease (FD), a rare X-linked lysosomal storage disorder, is caused by mutations in the α-galactosidase A gene gene encoding α-galactosidase A (α-Gal A). The functional deficiency of α-Gal A results in progressive accumulation of neutral glycosphingolipids, causing multi-organ damages including cardiac, renal, cerebrovascular systems. The current treatment is comprised of enzyme replacement therapy (ERT), oral pharmacological chaperone therapy and adjunctive supportive therapy. ERT has been introduced 20 years ago, changing the outcome of FD patients with proven effectiveness. However, FD patients have many unmet needs. ERT needs a life-long intravenous therapy, inefficient bio-distribution, and generation of anti-drug antibodies. Migalastat, a pharmacological chaperone, augmenting α-Gal A enzyme activity only in patients with mutations amenable to the therapy, is now available for clinical practice. Furthermore, these therapies should be initiated before the organ damage becomes irreversible. Development of novel drugs aim at improving the clinical effectiveness and convenience of therapy. Clinical trial of next generation ERT is underway. Polyethylene glycolylated enzyme has a longer half-life and potentially reduced antigenicity, compared with standard preparations with longer dosing interval. Moss-derived enzyme has a higher affinity for mannose receptors, and seems to have more efficient access to podocytes of kidney which is relatively resistant to reach by conventional ERT. Substrate reduction therapy is currently under clinical trial. Gene therapy has now been started in several clinical trials using in vivo and ex vivo technologies. Early results are emerging. Other strategic approaches at preclinical research level are stem cell-based therapy with genome editing and systemic mRNA therapy.

A Rat Liver Lysosomal Membrane Flavin-Adenine Dinucleotide Phosphohydrolase

  • Shin, Hae-Ja;Lim, Woon-Ki
    • BMB Reports
    • /
    • v.29 no.3
    • /
    • pp.253-260
    • /
    • 1996
  • An enzyme that hydrolyzes flavin-adenine dinucleotide (FAD) was found to be present in rat liver lysosomal membrane prepared from Triton WR-1339 filled lysosomes (tritosomes) purified by flotation on sucrose. This FAD phosphohydrolase (FADase) exhibited optimal activity at pH 8.5 and had an apparent Km of approximately 3.3 mM. The activity was decreased 50~70% by dialysis against EDTA and this was restored by $Zn^{2+}$, $Mg^{+2}$, $Hg^{+2}$, and $Ca^{+2}$ ions inhibited the enzyme, but $F^-$ and molybdate had no effect. The enzyme was also inhibited by p-chloromercuribenzoate (pCMB), reduced glutathione and other thiols, cyanide, and ascorbate. The presence of ATP, ADP, AMP. ${\alpha}-{\beta}-methylene$ ATP, AMP-p-nitrophenyl phosphate (PNP), GMP, and coenzyme A (CoA) decreased the activity on FAD, but pyrimidine nucleotides, adenosine, adenine, or $NAD^+$ were without effect. Phosphate stimulated the activity slightly. FAD phosphohydrolase activity was separated from ATPase and inorganic pyrophosphatase activities by solubilization with detergents and polyacrylamide gel electrophoresis and by linear sucrose density gradient centrifugation suggesting that the enzyme is different from ATPase, inorganic pyrophosphatase, and soluble lysosomal FAD pyrophosphatase. Paper chromatography showed that FAD was hydrolyzed to flavin mononucleotide (FMN) and AMP which were further hydrolyzed to riboflavin and AMP by phosphatases known to be present in lysosomal membranes. Incubation of the intact Iysosomes with pronase showed that the active site of FAD phosphohydrolase must be oriented to the cytosol. The FAD hydrolyzing activity was detected in Golgi, microsome, and plasma membrane, but not in mitochondria or soluble lysosomal preparations.

  • PDF

Hepatoprotective Effects of Various Enzyme Hydrolysates from Oysters on Tacrine-Induced Toxicity in Human Hepatoma Cells (타크린으로 유발한 간세포 독성에 대한 효소별 굴 가수분해물의 보호 효과)

  • Park, Hye-Jin;Do, Hyung-Joo;Kim, Ok-Ju;Kim, Andre;Ha, Jong-Myung
    • Journal of Life Science
    • /
    • v.22 no.1
    • /
    • pp.117-125
    • /
    • 2012
  • This study investigated the potential hepatoprotective benefits of Crassostrea gigas oyster hydrolysates. Oysters are known to have many biofunctional properties. In particular, oyster enzymatic hydrolysates produce substances with beneficial functions. The potential hepatoprotective effects of C. gigas hydrolysates against damage induced by tacrine were evaluated in vitro in HepG2 cells. Peptides were generated from C. gigas by enzymatic hydrolysis with Neutrase, Flavourzyme, or Protamex enzyme preparations. Tacrine treatment induced considerable cell damage in HepG2 cells, as shown by significant leakage of glutamic oxaloacetic transaminase (GOT) and lactate dehydrogenase (LDH). Cells treated with C. gigas hydrolysates showed an increased resistance to oxidative challenge compared to control cells, as revealed by higher cell survival against tacrine-induced hepatotoxicity. In addition, treatment with C. gigas hydrolysates reduced the leakage of GOT and LDH. These findings indicate that enzyme hydrolysates derived from C. gigas may be of benefit for developing hepatoprotective foods and drugs.

Cultivation of Arthrobactor sp. A-6 and Production of DFA III(Di-Fructofuranose Dianhydride) from Chicory Root Extract (Arthrobactor sp. A-6의 배양과 Chicory 뿌리 추출물에서 Di-Fructofuranose Dianhydride(DFAIII)의 생산)

  • 김기은;신창훈;최용진;김찬화
    • Korean Journal of Microbiology
    • /
    • v.36 no.1
    • /
    • pp.69-73
    • /
    • 2000
  • Arthrobacter sp. A-6 was cultivated and DFA III(di-fructofuranose dianhydride) was produced with inulin fructotransferase from the chicory root. The specific growth rate, yield of cell mass and yield of enzyme from the culture in variable chicory root extracts were studied and the results compared. Standard inulin solution(10%) was treated with the crude enzyme solution of inulin fructotransferase from the cell culture, 1.14mg/ml of DFA III was produced. The enzyme reactions were processed with various preparations of chicory root extracts in the same conditions. The highest yield of DFA III production(2.29 mg/ml) was obtained from the chicory roots without washing or extraction. The yield of DFA III from the washed chicory roots without extraction was at lowest(0.44 mg/ml). The production process of inulin fructotransferase and DFA III from the chicory root without prewashing or extraction steps were more efficient.

  • PDF

Purification of Deoxycytidine Kinase from Various Human Leukemic Cells by End-product Analog Affinity Chromatography

  • Kim, Min-Young
    • BMB Reports
    • /
    • v.28 no.4
    • /
    • pp.281-289
    • /
    • 1995
  • Homogeneous human deoxycytidine kinase was purified in one step from a variety of spontaneous human leukemic cells (T-ALL, B-ALL, B-CLL, AML, CML), and from cultured T-lymphoblast cells (MOLT-4) using the newly developed affinity medium, $dCp_4$-Sepharose. Starting with an ammonium sulfate fraction, purification was achieved in one step with the kinase being eluted from a column by the end product inhibitor, dCTP. The purified deoxycytidine kinase from T-ALL cells phosphorylated deoxyadenosine and deoxyguanosine, as well as deoxycytidine. The enzyme purified from T-ALL and B-CLL cells yielded one major band with a molecular weight of 52 kDa determined by SDS-polyacrylamide gel electrophoresis. AML and CML cells yielded one 52 kDa band and an extra band of 30 kDa molecular weight. On the other hand, B-ALL and MOLT-4 cells showed a low molecular weight band of 30 kDa only. However, the electrophoretic mobilities of enzymatic activity in 12% non-denaturing gels were identical for the dCyd kinase from all different kinds of leukemic cell lines, except that the B-ALL, B-CLL, and MOLT-4 cell preparations had an extra minor peak, all at the same position. dAdo and dCyd phosphorylating activities comigrated indicating that these activities are all associated with the same protein. Two new methods, a disk implantation method and a nitrocellulose powder method were used with a small amount of enzyme protein to raise polyclonal antibodies against dCyd kinase purified from T-ALL cells.

  • PDF

Inhibiting Activity of Garlic on a Drug Metabolizing Enzyme CYP3A4 (마늘의 약물대사효소 CYP3A4 저해 활성)

  • Lee, Eun-Hee;Cha, Bae-Cheon
    • Korean Journal of Pharmacognosy
    • /
    • v.37 no.2 s.145
    • /
    • pp.97-102
    • /
    • 2006
  • Garlic(Allium sativum Linn) is widely used as a common condiment for a variety of foods and beverages. It has been well known that fresh garlic and garlic supplement of commercial preparations have various therapeutic properties including antimicrobial activity, antiplatelet aggregation, antihypertension, and cholesterol-lowering effects, which contribute to its increasing uses for an alternative medicine. Allicin(diallyl thiosulfinate), the major bioactive components of garlic, is formed by alliinase cleavage of the naturally occurring alliin upon crushing or mincing of garlic, and is the progenitor of a number of other products, such as diallyl disulfide. CYP3A4, heme-containing monooxygenase, is a key enzyme responsible for drug metabolism. Therefor, in the present study, we isolated and examined the compounds with CYP3A4-inhibiting activities from garlic. Among EtOAc extracts of garlic, we found that N-p-coumaroyltyramine and N-feruloyltyramine showed remarkable CYP3A4-inhibiting activities, compared to diallyl disulfide. Structures of the isolated active compounds were established by chemical and spectroscopic means.

Interaction of Native and Apo-carbonic Anhydrase with Hydrophobic Adsorbents: A Comparative Structure-function Study

  • Salemi, Zahra;Hosseinkhani, Saman;Ranjbar, Bijan;Nemat-Gorgani, Mohsen
    • BMB Reports
    • /
    • v.39 no.5
    • /
    • pp.636-641
    • /
    • 2006
  • Our previous studies indicated that native carbonic anhydrase does not interact with hydrophobic adsorbents and that it acquires this ability upon denaturation. In the present study, an apo form of the enzyme was prepared by removal of zinc and a comparative study was performed on some characteristic features of the apo and native forms by far- and near-UV circular dichroism (CD), intrinsic fluorescent spectroscopy, 1-anilino naphthalene-8-sulfonate (ANS) binding, fluorescence quenching by acrylamide, and Tm measurement. Results indicate that protein flexibility is enhanced and the hydrophobic sites become more exposed upon conversion to the apo form. Accordingly, the apo structure showed a greater affinity for interaction with hydrophobic adsorbents as compared with the native structure. As observed for the native enzyme, heat denaturation of the apo form promoted interaction with alkyl residues present on the adsorbents and, by cooling followed by addition of zinc, catalytically-active immobilized preparations were obtained.

The properties of Proteolytic Enzymes from the Fruit of Broussonetia Kazinoki Siebold (닥나무 열매(楮實子)에서 추출한 단백질 분해효소의 특성에 관한 연구)

  • 윤숙자;오평수;장명숙
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.22 no.6
    • /
    • pp.803-806
    • /
    • 1993
  • The properties of proteolytic enzymes from the fruit of Broussonetia Kazinoki Siebold were investigated. The protease activity of the enzymes from the fruit of Broussonetia Kazinoki Siebold was 1.6 unit. The optimum temperature and pH of the enzymes were $60^{\circ}C$ and 7.0, respectively. The enzymes were stable at pH values from 6 to 8 for 1 hr. at $37^{\circ}C$ of incubation and also retained all activity after incubation for 1 hr. at $60^{\circ}C$. The enzyme preparations showed strong activities toward hemoglobin and collagen.

  • PDF