• Title/Summary/Keyword: enzyme kinetic

Search Result 294, Processing Time 0.024 seconds

Studies on Microbial Penicillin Amidase (Part 5) Application of Reinforced Calcium-Alginate Gel Entrappment Method for Immobilization of Penicillin Amidase from Bacillus megaterium (미생물 페니실린 아미다제에 관한 연구 (제 5보) Bacillus megaterium 페니실린 아미다제의 새로운 고정화 방법)

  • Son, Hyeung-Jin;Seong, Baik-Lin;Mheen, Tae-Ick;Han, Moon-Hi
    • Microbiology and Biotechnology Letters
    • /
    • v.9 no.3
    • /
    • pp.159-164
    • /
    • 1981
  • Reinforced Calcium-alginate gel entrappment method for enzyme immobilization is described with an example of penicillin amidase from Bacillus megaterium KFCC 10029, a partially constitutive mutant of B. megaterium ATCC 14945. Penicillin amidase recovered from the fermentation broth by adsorption on celite is mixed with alginate and gelatin solution, and cast into a pellet or noodle form by coagulation in calcium salt solution followed by crosslinking with glutaraldehyde. Optimum pH and temperature of the immobilized enzyme preparation were 8.0 and 6$0^{\circ}C$, respectively. Kinetic constants such as Km value and the inhibition constant of 6-APA and phenylacetic acid were 2.6 mM, 7.4 mM and 21.2 mM, respectively. The enzyme leakage from the adsorbent during operation was successfully prevented owing to the increase of physical strength of gel coat. The half lives in a column reactor were 6 and 30 days at the respective temperature of 4$0^{\circ}C$ and 3$0^{\circ}C$, which were the 6-8 fold increased values as compared with those of without entrappment. The results highly recommended the use of reinforced Calcium-alginate gel entrappment method for the enhancement of physical strength and the operational stability of alginate gel entrapped enzyme.

  • PDF

Biochemical Characterization of Recombinant L-Asparaginase (AnsA) from Rhizobium etli, a Member of an Increasing Rhizobial-Type Family of L-Asparaginases

  • Moreno-Enriquez, Angelica;Evangelista-Martinez, Zahaed;Gonzalez-Mondragon, Edith G.;Calderon-Flores, Arturo;Arreguin, Roberto;Perez-Rueda, Ernesto;Huerta-Saquero, Alejandro
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.3
    • /
    • pp.292-300
    • /
    • 2012
  • We report the expression, purification, and characterization of L-asparaginase (AnsA) from Rhizobium etli. The enzyme was purified to homogeneity in a single-step procedure involving affinity chromatography, and the kinetic parameters $K_m$, $V_{max}$, and $k_{cat}$ for L-asparagine were determined. The enzymatic activity in the presence of a number of substrates and metal ions was investigated. The molecular mass of the enzyme was 47 kDa by SDS-PAGE. The enzyme showed a maximal activity at $50^{\circ}C$, but the optimal temperature of activity was $37^{\circ}C$. It also showed maximal and optimal activities at pH 9.0. The values of $K_m$, $V_{max}$, $k_{cat}$, and $k_{cat}/K_m$ were $8.9{\pm}0.967{\times}10^{-3}$ M, $128{\pm}2.8$ U/mg protein, $106{\pm}2s^{-1}$, and $1.2{\pm}0.105{\times}10^4M^{-1}s^{-1}$, respectively. The L-asparaginase activity was reduced in the presence of $Mn^{2+}$, $Zn^{2+}$, $Ca^{2+}$, and $Mg^{2+}$ metal ions for about 52% to 31%. In addition, we found that $NH_4{^+}$, L-Asp, D-Asn, and ${\beta}$-aspartyl-hydroxamate in the reaction buffer reduced the activity of the enzyme, whereas L-Gln did not modify its enzymatic activity. This is the first report on the expression and characterization of the L-asparaginase (AnsA) from R. etli. Phylogenetic analysis of asparaginases reveals an increasing group of known sequences of the Rhizobial-type asparaginase II family.

Gene Cloning, Purification and Characterization of Xylanase 10A from Paenibacillus woosongensis in Escherichia coli (Paenibacillus woosongensis로부터 대장균에 Xylanase 10A의 유전자 클로닝과 정제 및 특성분석)

  • Yoon, Ki-Hong
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.2
    • /
    • pp.158-166
    • /
    • 2020
  • A gene coding for the xylanase was cloned from Paenibacillus woosongensis, followed by determination of its complete nucleotide sequence. This xylanase gene, designated as xyn10A, consists of 1,446 nucleotides encoding a polypeptide of 481 amino acid residues. Based on the deduced amino acid sequence, Xyn10A was identified to be a modular enzyme composed of a catalytic domain highly homologous to the glycosyl hydrolase family 10 xylanase and a putative carbohydrate-binding module (CBM) in the C-terminus. By using DEAE-sepharose and phenyl-sepharose column chromatography, Xyn10A was purified from the cellfree extract of recombinant Escherichia coli carrying a P. woosongensis xyn10A gene. The N-terminal amino acid sequence of the purified Xyn10A was identified to exactly match the sequence immediately following the signal peptide predicted by the Signal5.0 server. The purified Xyn10A was a truncated protein of 33 kDa, suggesting the deletion of CBM in the C-terminus by intracellular hydrolysis. The purified enzyme had an optimum pH and temperature of 6.0 and 55-60℃, respectively, with the kinetic parameters Vmax and Km of 298.8 U/mg and 2.47 mg/ml, respectively, for oat spelt xylan. The enzyme was more active on arabinoxylan than on oat spelt xylan and birchood xylan with low activity for p-nitrophenyl-β-xylopyranoside. Xylanase activity was significantly inhibited by 5 mM Cu2+, Mn2+, and SDS, and was noticeably enhanced by K+, Ni2+, and Ca2+. The enzyme could hydrolyze xylooligosaccharides larger than xylobiose. The predominant products resulting from xylooligosaccharide hydrolysis were xylobiose and xylose.

A New Method for Determination of Enzyme Reaction and Activity of Lysozyme with UV-Spectrophotometer (UV-분광광도계를 이용한 새로운 Lysozyme의 효소반응 및 활성측정법 연구)

  • Kim, Woon-Soo;Kim, Yong-Wook;Kim, Woo-Sik
    • Applied Chemistry for Engineering
    • /
    • v.9 no.6
    • /
    • pp.857-863
    • /
    • 1998
  • A simple and new experimental method for determination of lysozyme-M. lysodeikticus cell lysis reaction and lysozyme activity was suggested using Beer's law. The UV transmittance of the solution changed with the concentration of M. lysodeikticus and the relationship between the UV transmittance and M. lysodeikticus cell concentration followed Beer's Law. In addition, it was experimentally proven that the UV transmittance of the solution was not influenced by the lysozyme concentration and product of the lysis reaction. During the lysozyme-M. lysodeikticus cell lysis reaction, thus, M. lysodeikticus cell concentration in the solution could be measured in-situ by UV-spectrophotometer. By using these experimental data, kinetic Parameters of the Michaelis-Menten equation for the lysozyme-M. lysodeikticus cell 1ysis reaction was simply determined The maximum reaction rate constant ($k_3$) and Michaelis-Menten constants were $0.1734sec^{-1}$ and $9.83{\times}10^{-6}M$ respectively. The activity of the lysozyme could also be obtained with this experiment because the lysis reaction rate of the 1ysozyme depended on its activity.

  • PDF

Effect of Ginseng on the Hepatic Alcohol Metabolizing Enzyme System Activity in Chronic Alcohol-Treated Mouse (만성(慢性) Acohol 섭취(攝取) mouse에서 alcohol 대사(代謝) 효소활성(酵素活性)에 미치는 인삼(人蔘)의 영향(影響))

  • Choi, Chong-Won;Lee, Sang-Ill;Huh, Keun
    • The Korean Journal of Pharmacology
    • /
    • v.20 no.1 s.34
    • /
    • pp.13-21
    • /
    • 1984
  • The present study was undertaken to investigate an effect of ginseng butanol fraction(total saponin) on the hepatic ethanol metabolism, we used experimental animals for the subject of study. When, in case of ADH and MEOS, ginseng butanol fraction was added, enzyme activity was increased in a small dose, and on the contrary, in a large dose, showed inhibitory effect. in catalase, the activity showed no significant effect by adding ginseng butanol fraction. In the light of kinetic aspect, when, in reaction mixture, ethanol and ginseng butanol fraction were concurrently added and reacted, Km value of ADH and MEOS was decreased. After pretreated with ginseng butanol fraction and inducement of acute toxic state by ethanol, the activities of ADH and MEOS were increased to an extent of about 25% compared to controls. But catalase activity was not significantly affected. In case that ginseng butanol fraction was given to mice fed with 5% ethanol instead of water for 60 days, the activities of ADH and MEOS were increased about 20% to 50% compared to ethanol-treated group. On the contrary, catalase activity was not affected. But blood concentrations of ethanol were decreased due to ginseng butanol fraction treatment. All these observations suggested that reduction of ethanol blood concentration should be dependent upon increased activities of ADH and MEOS. Thereby it suggests the recovery from alcohol intoxication can be prompted by treatment with ginseng.

  • PDF

Determination and Characterization of Thermostable Esterolytic Activity from a Novel Thermophilic Bacterium Anoxybacillus gonensis A4

  • Faiz, Ozlem;Colak, Ahmet;Saglam, Nagihan;Canakci, Sabriye;Belduz, Ali Osman
    • BMB Reports
    • /
    • v.40 no.4
    • /
    • pp.588-594
    • /
    • 2007
  • A novel hot spring thermophile, Anoxybacillus gonensis A4 (A. gonensis A4) was investigated in terms of capability of tributyrin degradation and characterization of its thermostable esterase activity by the hydrolysis of p-nitrophenyl butyrate (PNPB). It was observed that A. gonensis A4 has an esterase with a molecular weight of 62 kDa. The extracellular crude preparation was characterized in terms of substrate specificity, pH and temperature optima and stability, kinetic parameters and inhibition/activation behaviour towards some chemicals and metal ions. Tributyrin agar assay showed that A. gonensis A4 secreted an esterase and $V_{max}$ and $K_m$ values of its activity were found to be 800 U/L and 176.5 ${\mu}M$, respectively in the presence of PNPB substrate. The optimum temperature and pH, for A. gonensis A4 esterase was $60-80^{\circ}C$ and 5.5, respectively. Although the enzyme activity was not significantly changed by incubating crude extract solution at $30-70^{\circ}C$ for 1 h, the enzyme activity was fully lost at $80^{\circ}C$ for same incubation period. The pH-stability profile showed that original crude esterase activity increased nearly 2-fold at pH 6.0. The effect of some chemicals on crude esterase activity indicated that A. gonensis A4 produce an esterase having serine residue in active site and -SH groups were essential for its activity.

Production of Mn-Dependent Peroxidase from Bjerkandera fumosa and Its Enzyme Characterization

  • Jarosz-Wilkolazka, Anna;Luterek, Jolanta;Malarczyk, Elzbieta;Leonowicz, Andrzej;Cho, Hee-Yeon;Shin, Soo-Jeong;Cho, Nam-Seok
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.2
    • /
    • pp.85-95
    • /
    • 2007
  • Manganese dependent peroxidase (MnP) is the most ubiquitous enzyme produced by white-rot fungi, MnP is known to be involved in lignin degradation, biobleaching and oxidation of hazardous organopollutants. Bjerkandera fumosa is a nitrogen-unregulated white-rot fungus, which produces high amounts of MnP in the excess of N-nutrients due to increased biomass yield. The objective of this study was to optimize the MnP production in N-sufficient cultures by varying different physiological factors such as Mn concentration, culture pH, and incubation temperature. The growth of fungus was optimal in pH 4.5 at $30^{\circ}C$, $N_2$-unregulated white-rot fungus produces high amounts of MnP in the excess N-nutrients. The fungus produced the highest level of MnP (up to $1000U/{\ell}$) with $0.25g/{\ell}$ asparagine and $1g/{\ell}$ $NH_4Cl$ as N source at 1.5 mM $MnCl_2$ concentration, pH value of 4.5 at $30^{\circ}C$. Purification of MnP revealed the existence of two isoforms: MnPl and MnP2. The molecular masses of the purified MnPl and MnP2 were in the same range of 42~45 kDa. These isoforms of B. fumosa strictly require Mn to oxidize phenolic substrates. Concerned to kinetic constants of B. fumosa MnPs, B. fumosa has similar Km value and Vmax compared to the other white-rot fungi.

Binding of Lichen Phenolics to Purified Secreted Arginase from the Lichen Evernia prunastri

  • Legaz, Maria-Estrella;Vicente, Carlos;Pedrosa, Mercedes M.
    • BMB Reports
    • /
    • v.34 no.3
    • /
    • pp.194-200
    • /
    • 2001
  • Secreted arginase from Evernia prunastri thallus has been purified 616-fold from the incubation medium. Purified arginase was resolved as only one peak in a capillary electrophoresis with a pI value of 5.35. The protein contained high amounts of acidic amino acids, such as Asx and Glx, and a relatively high quantity of Ser and Gly. The molecular mass of native, purified arginase was estimated as about 26 kDa by SE-HPLC. Substrate saturated kinetic showed a typical Michaelis-Menten relationship with a K_m value of 3.3 mM L-arginine. Atranorin behaved as a mixed activator of the enzyme (apparent $K_m$ = 0.96 mM); whereas evernic and usnic acid were revealed as non competitive inhibitors (apparent $K_m$ values were 3.16 mM and 3.05 mM, respectively). Kinetics of atranorin binding indicated that saturation was reached from 0.18 ${\mu}mol$ of the total atranorin and the occurrence of multiple sites for the ligand. This agrees with a possible aggregation of several enzyme subunits during the interaction process. A value of binding sites of about 12 was obtained. The binding of evernic acid was saturated from 23 nmol of total phenol. The number of binding sites was about 5. The loss of the binding ability of evernic acid could be interpreted as a single negative cooperatively. Usnic acid behaves in a similar way to evernic acid, although the binding saturation occurs at $0.14\;{\mu}moles$ of the ligand. This binding appears to be unspecific, and has 28 usnic acid binding sites to the protein.

  • PDF

Catalytic Importance of the C-Terminal Region of a Fibrinolytic Enzyme from Lumbricus rubellus

  • Kim, Yu-Sam;Kim, Jeong-Eun;Byun, Hye-Sin;Chang, Chung-Soon;Suh, Jung-Jin
    • BMB Reports
    • /
    • v.28 no.5
    • /
    • pp.398-401
    • /
    • 1995
  • Two fibrinolytic enzymes from the autolysate of Lumbricus rubellus were purified in homogeneous form. Their molecular sizes were 31,000 (Enz1) and 35,000 (Enz2) Da. respectively. However, the N-Terminal amino acid sequences of Enz1 and Enz2 were exactly the same: Ile-Val-Gly-Gly-Ile-Glu-Ala-Arg-Pro-Tyr-Glu-Phe-Pro-Trp-Gln-. These results indicate that Enz1 is a shortened form of Enz2 formed during autolysis. When a synthetic substrate, Ile-Pro-Arg-pNA, was used, the catalytic activity were observed in the pH range of 5-10 and the kinetic parameters including $K_m$ (1.6 ${\mu}m$) and $V_{max}$ (40 nmol/jmin/mg) were almost identical between the two enzymes. However, the fibrinolytic activity of Enz2 was at least 1.25 times higher than that of Enz1, suggesting that the C-terminal region of Enz2 is important in fibrinolysis but not in amidolysis. Furtheimore. fibrinolytic activity of the enzymes was increased by the addition of the lipid extracted from L. rubellus in the presence of $MgCl_2$ or $CaCl_2$. The stimulatary effect of lipid on Enz2 was higher compared to Enz1.

  • PDF

Molecular Characterization of the α-Galactosidase SCO0284 from Streptomyces coelicolor A3(2), a Family 27 Glycosyl Hydrolase

  • Temuujin, Uyangaa;Park, Jae Seon;Hong, Soon-Kwang
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.9
    • /
    • pp.1650-1656
    • /
    • 2016
  • The SCO0284 gene of Streptomyces coelicolor A3(2) is predicted to encode an α-galactosidase (680 amino acids) belonging to glycoside hydrolase family 27. In this study, the SCO0284 coding region was cloned and overexpressed in Streptomyces lividans TK24. The mature form of SCO0284 (641 amino acids, 68 kDa) was purified from culture broth by gel filtration chromatography, with 83.3-fold purification and a yield of 11.2%. Purified SCO0284 showed strong activity against p-nitrophenyl-α-D-galactopyranoside, melibiose, raffinose, and stachyose, and no activity toward lactose, agar (galactan), and neoagarooligosaccharides, indicating that it is an α-galactosidase. Optimal enzyme activity was observed at 40℃ and pH 7.0. The addition of metal ions or EDTA did not affect the enzyme activity, indicating that no metal cofactor is required. The kinetic parameters Vmax and Km for p-nitrophenyl-α-D-galactopyranoside were 1.6 mg/ml (0.0053 M) and 71.4 U/mg, respectively. Thin-layer chromatography and mass spectrometry analysis of the hydrolyzed products of melibiose, raffinose, and stachyose showed perfect matches with the masses of the sodium adducts of the hydrolyzed products, galactose (M+Na, 203), melibiose (M+Na, 365), and raffinose (M+Na, 527), respectively, indicating that it specifically cleaves the α-1,6-glycosidic bond of the substrate, releasing the terminal D-galactose.