• Title/Summary/Keyword: enzyme hydrolyzates

Search Result 28, Processing Time 0.023 seconds

Fermentation of rice bran and defatted rice bran for butanol production using Clostridium beijerinckii NCIMB 8052 (수송용 바이오 부탄올 생산을 위한 미강발효의 최적화)

  • Lee, Ji-Eun;Seo, Eun-Jong;Park, Ki-Moon;Jin, Young-Su
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.235-238
    • /
    • 2008
  • We examined butanol fermentation by Clostridium beijerinckii NCIMB 8052 using various hydrolyzates obtained from rice bran which is one of the most abundant agricultural by-products in Korea and Japan. In order to increase the amount of fermentable sugars in the hydrolyzates of rice bran, various hydrolysis procedures were applied. Total eight different hydrolyzates were prepared using rice bran (RB) and defatted rice bran (DRB) with enzyme or acid treatment and both. Each hydrolyzate was evaluated in terms of total sugar concentration and butanol production after fermentation by C. beijerinckii NCIMB 8052. Acid treatment yielded more sugar than enzyme treatment and combined treatment with enzyme and acid yielded even more sugars as compared to single treatment with enzyme or acid. As a result, the highest sugar concentration (33 g/L) was observed from the hydrolyzate from DRB (100 g/L) with combined treatment using enzyme and acid. Prior to perform fermentation of the hydrolyzates, we examined the effect of P2 solution containing yeast extract, buffer, minerals, and vitamins on production of butanol during the fermentation. Fermentation of the hydrolyzates with or without additionof P2 was performed using C. beijerinckii NCIMB 8052 in a 1 L anaerobic bioreactor. Although the hydrolyzates RB were able to support growth and butanol production, addition of P2 solution into the hydrolyzates significantly improved cell growth and butanol production. Highest butanol production (12.24 g/L) was observed from the hydrolyzate of DRB with acid and enzyme treatment after supplementation of P2 solution.

  • PDF

Fermentation of Rice Bran and Defatted Rice Bran for Butanol Production Using Clostridium beijerinckii NCIMB 8052

  • Lee, Ji-Eun;Seo, Eun-Jong;Kweon, Dae-Hyuk;Park, Ki-Moon;Jin, Yong-Su
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.5
    • /
    • pp.482-490
    • /
    • 2009
  • We examined butanol fermentation by Clostridium beijerinckii NCIMB 8052 using various hydrolyzates obtained from rice bran, which is one of the most abundant agricultural by-products in Korea and Japan. In order to increase the amount of fermentable sugars in the hydrolyzates of rice bran, various hydrolysis procedures were applied. Eight different hydrolyzates were prepared using rice bran (RB) and defatted rice bran (DRB) with enzyme or acid treatment or both. Each hydrolyzate was evaluated in terms of total sugar concentration and butanol production after fermentation by C. beijerinckii NCIMB 8052. Acid treatment yielded more sugar than enzyme treatment, and combined treatment with enzyme and acid yielded even more sugars as compared with single treatment with enzyme or acid. As a result, the highest sugar concentration (33 g/l) was observed from the hydrolyzate from DRB (100 g/l) with combined treatment using enzyme and acid. Prior to fermentation of the hydrolyzates, we examined the effect of P2 solution containing yeast extract, buffer, minerals, and vitamins on production of butanol during the fermentation. Fermentation of the hydrolyzates with or without addition of P2 was performed using C. beijerinckii NCIMB 8052 in a 1-1 anaerobic bioreactor. Although the RB hydrolyzates were able to support growth and butanol production, addition of P2 solution into the hydrolyzates significantly improved cell growth and butanol production. The highest butanol production (12.24 g/l) was observed from the hydrolyzate of DRB with acid and enzyme treatment after supplementation of P2 solution.

Purification and Characterization of a Novel Malto-oligosaccharides Forming $\alpha$-Amylase from Bacillus sp.SUH4-2 (Bacillus sp. SUH4-2로부터 생산되는 말토올리고당 생성 $\alpha$-Amylase의 정제 및 특성)

  • Yoon, Sang-Hyeon;Kim, Myo-Jeong;Kim, Jung-Wan;Kwon, Kisung;Lee, Yin-Won;Park, Kwan-Hwa
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.5
    • /
    • pp.573-579
    • /
    • 1995
  • A Bacillus strain capable of producing an extracellular malto-oligosaccharides forming $\alpha $-amylase was isolated from soil and designated as Bacillus sp. SUH4-2. The enzyme was purified by ammonium sulfate fractionation, DEAE-Toyopearl and Mono-Q HR 5/5 column chromatographies using a FPLC system. The specific activity of the enzyme was increased by 16.1-fold and the yield was 13.5%. The optimum temperature for the activity of $\alpha $-amylase was 60-65$\circ$C and more than 50% of initial activity was retained after the enzyme was incubated at 60$\circ$C for 40 min. The enzyme was stable over a broad pH range of 5.0-8.0 and the optimum pH was 5.0-6.0. The molecular weight of the enzyme was determined to be about 63.6 kD and isoelectric point was around 5.8. The enzyme activity was strongly inhibited by Mn$^{2+}$, Ni$^{2+}$, and Cu$^{2+}$ ; slightly by Ca$^{2+}$. The purified enzyme produced starch hydrolyzates containing mainly maltose and maltotriose from soluble starch. The starch hydrolyzates were composed of 11% glucose, 59% maltose, 25% maltotriose and 5% maltotetraose.

  • PDF

Isolation of Soil Bacteria Secreting Raw-Starch-Digesting Enzyme and the Enzyme Production

  • Sung, Nack-Moon;Kim, Keun;Choi, Sung-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.3 no.2
    • /
    • pp.99-107
    • /
    • 1993
  • Two strains (No. 26 and 143) of bacteria which secrete both pectinase and raw-starch-digesting amylase simultaneously, were isolated from various domestic soil samples. The two bacteria were identified as Pasteurella ureae judging by their morphological and physiological characteristics. The optimal culture conditions for the production of raw-starch-digesting enzyme by the Pasteurella ureae 26 were using $NH_4NO_3$ as the nitrogen source at $37^{\circ}C$ with the pH of 7.5, and 15 of C/N ratio. Since the enzyme was produced only when raw or soluble starch was used as a carbon source, but not when glucose or other sugars was used, the enzyme was considered to be an inducible enzyme by starch. Thin layer chromatography of the hydrolyzed product of starch by the raw-starch-digesting enzyme of the strain No. 26 showed that glucose, maltose and other oligosaccharides were present in the hydrolyzates, and therefore the enzyme seemed to be ${\alpha}-amylase$. The enzyme had adsorbability onto raw com starch in the pH range of 3 to 9.

  • PDF

Isolation and Characteristics of Angiotensin-I Converting Enzyme Inhibitory Activity of Peptic Hydrolyzates of Anchovy Muscle Protein (멸치육 단백질 효소가수분해물로부터 Angiotensin-I 전환효소 저해제의 분리 및 그 특성)

  • KIM Seon-Bong;LEE Tae-Gee;PARK Yeung-Beom;YEUM Dong-Min;KIM Oi-Kyung;DO Jeong-Ryong;PARK Young-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.27 no.1
    • /
    • pp.1-6
    • /
    • 1994
  • Hydrolyzates which inhibit the angiotensin-I converting enzyme(ACE) were prepared from defatted anchovy meal by pepsin. These were tested for inhibitory activity against ACE, which is one of the hypertension inducing factors. The ACE inhibitory activity of the hydrolyzates increased until 20hrs of hydrolysis had elapsed but slightly decreased after that time. And presence of $50\%$ ethanol soluble peptide-nitrogen increased slowly up to 12hrs of hydrolysis, and then mainly increased until 20hrs of hydrolysis was completed. From the profiles of gel permeation chromatography on a Bio-gel P-2 of $50\%$ ethanol soluble fraction obtained from hydrolyzate for 20hrs, the higher active fractions were 2'($IC_{50}=45\;{\mu}g\;protein/ml$) and 4'($IC_{50}=76\;{\mu}g\;protein/ml$). Amino acid analysis showed major quantities of glutamic acid, leucine, lysine for 2'and aspartic acid, threonine for 4' respectively.

  • PDF

Development of Adhesive Resins Formulated with Rapeseed Flour Hydrolyzates for Laminated Veneer Lumber and Its Performance Evaluation (유채박을 이용한 단판적층재용 접착제의 개발 및 성능평가)

  • Yang, In;Han, Gyu-Seong;Choi, In-Gyu;Kim, Yong-Hyun;Ahn, Sye-Hee;Oh, Sei-Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.3
    • /
    • pp.221-229
    • /
    • 2011
  • Due to the increase of oil price and the environmental issue such as the emission of volatile organic compounds, the necessity for developing alternative resins of petroleum-based adhesive resins, which have extensively been used for the manufacture of wood-based products, has been speculation since the early 1990. In our study, rapeseed flour (RSF), which is the by-product of bio-diesel produced from rapeseed, were hydrolyzed by enzymes. As a crosslinking agents of the RSF hydrolyzates, phenol-formaldehyde prepolymers (PF) were prepared. The RSF hydrolyzates and PF were mixed to complete the formulation of RSF-based adhesive resins, and the resins were applied to make the laminated veneer lumber (LVL). The physical and mechanical properties of the LVL were measured to examine whether RSF can be used as raw materials of adhesive resins for the fabrication of LVL or not. The average moisture content and soaking delamination rate of the LVL bonded with RSF-based adhesive resins exceeded the minimum requirement of KS standard. Moreover, thermal analysis of the RSF-based resins showed similar tendencies except for the RSF-based adhesive resins formulated with pectinase-hydrolyzed RSF. The bending strengths of the LVL were higher than that of the LVL made with commercial PF resins. These results showed the potential of RSF as a raw material of alternative adhesives for the production of LVL. Further works on the optimal conditions of RSF hydrolysis and spreading characteristics for RSF-based adhesive resins is required to improve the adhesive performance of RSF-based resins.

Characteristics and Action Pattern of Alikaline Lipase from Serratia liquefaciens AL-11 (Serratia liquefaciens AL-11이 생산하는 Alkaline Lipase의 특성 및 작용양상)

  • Choi, Cheong;Kim, Tae-Wan;Ahn, Bong-Jeon;Kim, Yung-Hwal;Son, Jun-Ho;Kim, Sung;Choi, Hee-Jin
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.1
    • /
    • pp.87-91
    • /
    • 1996
  • The optimum temperature and pH for the enzyme activity were 45$^{\circ}C$ and 10.0, respectively. The enzyme was stable in a pH range of 5 to 10, and 62% of its activity was lost on heat treatment of 60$^{\circ}C$ for 20 min. The activity of the purified enzyme was inhibited by $Fe^{2+},\;Zn^{2+}\;and\;Pb^{2+}$, and slightly activated by $Mn^{2+}\;and\;Ca^{2+}$. ${\gamma}$-Chloromercuribenzoic acid, 2,4-dinitrophenol and $H_{2}O_{2}$ did not show inhibitroy effect on the lipolytic activity of the alkaline lipase but ethylenediaminetetraacetic acid inhibited the enzyem activity. This suggested that the enzyme have metal group in its active site. Sodium salts of bile acids stimulated the enzyme activity. Analysis of hydrolyzates of olive oil after the reaction revealed that Serratia liquefaciens AL-11 produced non-specific lipolytic enzyme.

  • PDF

Optimization of an Extracellular Dextranase Production from Lipomyces starkeyi KCTC 17343 and Analysis of Its Dextran Hydrolysates (Lipomyces starkeyi KCTC 17343에 의한 extracellular dextranase 최적생산과 덱스트란 hydrolysates 분석)

  • Chang, Yoon-Hyuck;Yeom, Joong-Hyun;Jung, Kyung-Hwan;Chang, Byung-Chul;Shin, Jung-Hee;Yoo, Sun-Kyun
    • Journal of Life Science
    • /
    • v.19 no.4
    • /
    • pp.457-461
    • /
    • 2009
  • We optimized dextranase culture conditions by batch fermentation using Lipomyces starkeyi KCTC 17343. Furthermore, dextranase was purified by an ultra-membrane, and then dextran hydrolyzates were characterized. Cell growth and dextranase production varied depending on the initial culture pH and temperature. The conditions of optimal dextranase production were met in a pH range of 4-5 and temperature between $25-30^{\circ}C$. At optimal fermentation conditions, total enzyme activity and specific enzyme activity were about 4.85 IU/ml and 0.79 IU/g cells, respectively. The specific growth rate was examined to be $0.076\;hr^{-1}$. The production of dextranase in culture broth was very stably maintained after mid-log phase of growth. The enzyme hydrolyzed dextran into DP (degree of polymerization) 2 to 8 oligodextran series. Analysis of the composition of hydrolysates suggested that the enzyme produced is an endo-dextranase.

Production and Characterization of New Structured-oligosaccharides from Mixed-enzyme of Dextransucrase and ${\alpha}$-amylase (Dextrnasucrase와 ${\alpha}$-amylase의 혼합효소를 이용한 새로운 구조의 올리고당 생산 및 특성 연구)

  • Lee, In-Su;Kim, Do-Man;Chang, Pahn-Shick
    • KSBB Journal
    • /
    • v.14 no.6
    • /
    • pp.707-712
    • /
    • 1999
  • We have produced new-structured oligosaccharides using mixed-enzyme reactor of dextransucrase from Leuconostoc mesenterides B-512FMCM and ${\alpha}$-amylase. When the concentrations of sucrose and starch were 10%(w/v) and 5%(w/v), respectively, the maximum yield of oligosaccharides with both dextransucrase(100U) and ${\alpha}$-amylase(1000U) was 66.4%. The activity of dextransucrase in mixed-enzyme reactor was increased about 2.5 times by acceptor reaction with starch hydrolyzates. As the activities of dextransucrase:${\alpha}$-amylase were increased from 20U:200U to 500U:5000U, the amount of polymer was increased and the yield of oligosaccharides was decreased. By the addition of sucrose into mixed-enzyme reactor following the prehydrolysis of starch with ${\alpha}$-amylase, the yield was increased up to 12% compared with that of mixed-enzyme reactor without the addition of starch hydrolyzate. New structured-oligosaccharides showed heat resistance up to 140$^{\circ}C$ and was stable in acidic condition at pH 3~6.

  • PDF

Peptide Inhibitors for Angiotensin I Converting Enzyme from Corn Gluten Digests. (옥수수 글루텐 효소 가수분해물의 Angiotensin I Converting Enzyme 활성 저해 펩타이드의 정제)

  • 오광석;이동건;홍정운;성하진
    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.1
    • /
    • pp.51-56
    • /
    • 2003
  • The angiotensin I converting enzyme (ACE) has an important role in the maintenance of blood pressure. The ACE inhibitory activities of foods have recently been studied. We tried to isolate ACE inhibitory peptides from the Flavourzyme (FZ), Pescalase (PE), and Thermolysine (TH) protease digests of corn gluten, which was restricted to the use the source of food for digestion problem. The FZ, PE, TH/PE protease hydrolyzed corn gluten and the inhibitory activities of the hydrolyzates for ACE were measured. Major fractions were isolated from the digests using ODS chromatography after treating with ethanol in step gradient. The ACE inhibitors were further purified by Bio-Gel P-2 column and reverse phase HPLC. Five inhibitory peptides were isolated. Their amino acids were sequenced as LPF ($IC_{50}$ = 40$\mu$M), GPP ($IC_{50}$ = 17.6$\mu$M), PNPY ($IC_{50}$ = 30.7$\mu$M), SPPPFYL ($IC_{50}$ = 63 $\mu$M), and SQPP ($IC_{50}$ = 17.2$\mu$M).