• Title/Summary/Keyword: enzyme hydrolysis

Search Result 968, Processing Time 0.025 seconds

Usefulness of Freshwater Alga Water-net (Hydrodictyon reticulatum) as Resources for Production of Fermentable Sugars (발효 당용액 생산자원으로서 담수조류 그물말의 유용성)

  • Kim, Seul-Ki;Hwang, Hyun-Jin;Kim, Jae-Deog;Ko, Eun-Hye;Choi, Jung-Sup;Kim, Jin-Seog
    • Korean Journal of Weed Science
    • /
    • v.32 no.2
    • /
    • pp.85-97
    • /
    • 2012
  • To investigate the usefulness of freshwater alga Water-net (Hydrodictyon reticulatum, HR) as resources for production of fermentable sugars, the easiness of enzymatic saccharification was evaluated at first. When 6 plant materials (HR, Spirulina, Chlorella, Scenedesmus, Cladophora, Corn stover) were enzymatically hydrolyzed with 2% solid loading at the same condition, HR showed the highest ratio of saccharification based on glucose production. No milled HR was also completely saccharified at the amounts of optimal enzyme mixture. Glucose yield was not changed though the citrate buffer strength for saccharification was decreased from 0.1 M to 0.1 mM. Only about 10% yield reduction was observed compared to that of $120^{\circ}C$ treatment when HR was enzymatically hydrolyzed at room temperature. The saccharification was normally occurred at $37^{\circ}C$ and pH 6.5 which is general growth condition of fermentable microrganisms, suggesting that HR have a biomass characteristics applicable for the simultaneous saccharification and fermentation. The saccharification was occurred by more than 70~80% of one of the best condition although the supplied enzyme amounts was reduced to 1/10 volume. And the glucose yield by enzymatic hydrolysis was not decreased by 10% HR solid loading and began to decrease at more than 15% solid contents. Above these results show that HR is an interesting algal biomass which is relatively easy to be saccharified by hydrolyzing enzymes. In addition, HR is a flilamentous alga and very easy to be collected. Therefore, HR seems to be an useful and valuable resources in the economical production of fermentable sugars for manufacture of bio-chemical products.

Antioxidant Effect of Enzymatic Hydrolysate from Sargassum thunbergii Using Vibrio crassostreae PKA 1002 Crude Enzyme (Vibrio crassostreae PKA 1002 유래 조효소액에 의한 지충이 (Sargassum thunbergii) 분해물의 항산화 효과)

  • Bark, Si-Woo;Kim, Koth-Bong-Woo-Ri;Kim, Min-Ji;Kang, Bo-Kyeong;Pak, Won-Min;Ahn, Na-Kyung;Choi, Yeon-Uk;Park, Ji-Hye;Bae, Nan-Young;Lim, Sung-Mee;Ahn, Dong-Hyun
    • Microbiology and Biotechnology Letters
    • /
    • v.43 no.2
    • /
    • pp.105-111
    • /
    • 2015
  • An alginate degrading enzyme from the Vibrio crassostreae PKA 1002 strain was used to hydrolyze the water extract of Sargassum thunbergii. To obtain the optimum degrading conditions for the S. thunbergii water extract, the mixture of the water extract and enzyme was incubated at 30℃ for 0, 3, 6, 12, and 24 h, and its alginate degrading ability was measured by reducing sugar and viscosity. A temperature of 30℃ for a period of 6 h was found to be the optimal condition for the enhancement of the alginate’s degrading ability. The pH of the enzymatic hydrolysate was not significantly different from that of the water extract. Overall lightness decreased, but redness and yellowness increased after enzymatic hydrolysis. Total phenolic compounds did not differ between the water extract and the enzymatic hydrolysate. DPPH radical scavenging activity and the reducing power of the enzymatic hydrolysate were lower than those of the water extract. However, the chelating effect of the enzymatic hydrolysate (80.08% at 5 mg/ml) was higher than that of the water extract (62.29%). These results indicate that the enzymatic hydrolysate possesses an anti-oxidant activity by way of the action of the chelating effect.

Processings of Flavoring Substances from tow-Utilized Shellfishes (연안산 저활용 패류를 이용한 풍미소재의 개발)

  • OH Kwang-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.6
    • /
    • pp.791-798
    • /
    • 1998
  • To develop natural flavoring substances. optimal hydrolysis conditions for two stage enzyme hydrolysates (TSEH) using low-utilized shellfishes such as purplish clam and frozen oyster stored at $-20^{\circ}C$ for 60 days. The optimal conditions for TSEH method were revealed in temperature at $50^{\circ}C$ 3 hours digestion with alcalase (Aroase AP-10, $0.3%$ w/v, pH 8.0) at the 1st stage and $45^{\circ}C$ 2 hours digestion with neutrase (Pandidase NP-2, $0.3\%$ w/v, pH 6.0) at the 2nd stage. Among water extracts, autolytic extracts and 4 kinds of enzyme hydrolysates tests, TSEH method was superior to other methods on the aspect of yields, nitrogen contents, taste such as umami and control of off-flayer formation, and transparency of extracts. From the results of chemical experiments and sensory evaluation, we may conclude that TSEH from low-utilized marine products is more flavorable compared the conventional enzyme hydrolysates, it could be commercialized as the seasoning substances.

  • PDF

Cytotoxicities of Hydrolyzed Crude Laminaran from Eisenia bicyclis on the SNU-1, HeLa and SW Cells (대황으로부터 추출한 crude laminaran 가수분해물의 암 세포독성)

  • Do, Jeong-Ryong;Kim, Dong-Soo;Park, Jong-Hyuk;Kim, Young-Myung
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.6
    • /
    • pp.793-798
    • /
    • 2006
  • We investigated the effects on the cytotoxicity against several cancer cells of the hydrolysis and molecular weight fractionation of crude laminaran from E. bicyclis, a brown seaweed collected from Uleung island in Korea, was extracted with boiling water and then crude laminaran was prepared by ethanol precipitation of extract obtained after elimination of calcium alginate by calcium chloride. Crude laminaran was hydrolyzed by enzyme (Econase CE), acid (0.1 N HCl) and autoclaving ($121^{\circ}C$, 180 min), and the molecular weight fractions by ultrafiltration to generate molecular weight fractions. Total sugar and sulfate contents of hydrolyzed laminaran were 72.3 and 3.5% (enzyme hydrolysate), 68.5 and 3.0% (acid hydrolysate), 70.2 and 3.2% (autoclaved), and monosaccharides of which consisted of glucose (74.7-78.5%), mannose (9.9-11.5%), galactose (8.5-9.6%) and fucose (3.1-4.5%), respectively. When the cytotoxicity of hydrolyzed laminaran on SNU-1, HeLa and SW cells was evaluated by MTT assay, growth-inhibitory activity of the enzyme hydrolysate against cancer cells was higher than that of acid hydrolysate or autoclaved laminaran. Furthermore, the fraction at a molecular weight range of 10 to 50 kDa revealed higher anti-proliferative activities. The $IC_{50}$ values of 10-50 kDa fraction at a molecular weight range of 10 to 50 kDa revealed higher anti-proliferative activities. The $IC_{50}$ values of 10-50 kDa fractions on SNU-1, HeLa and SW cells were 60.4, 58.6 and 53.9 ${\mu}g/mL$ for enzymatic hydrolysate, 75.6, 73.5 and 77.4 ${\mu}g/mL$ for acid hydrolysate, and 61.7, 68.2 and 60.8 ${\mu}g/mL$ for autoclaved, respectively.

Characterization of Cellulases from Schizophyllum commune for Hydrolysis of Cellulosic Biomass (Schizophyllum commune에 의한 Cellulase 생산 및 섬유소계 바이오매스의 당화를 위한 효소적 특성)

  • Kim, Hyun-Jung;Kim, Yoon-Hee;Cho, Moon-Jung;Shin, Keum;Lee, Dong-Heub;Kim, Tae-Jong;Kim, Yeong-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.6
    • /
    • pp.547-560
    • /
    • 2010
  • The optimum culture condition of Schizophyllum commune for the cellulase production and its enzymatic characteristics for saccharification of cellulosic biomass were analyzed. S. commune secrets ${\beta}$-1,4-xylosidase (BXL) and cellulases, including endo-${\beta}$-1,4-glucanase (EG), cellobiohydrolase (CBH), and ${\beta}$-glucosidase (BGL). The optimum reaction temperature for all cellulases was $50^{\circ}C$ and the thermostable range was $30{\sim}40^{\circ}C$C. The optimum reaction pH for all cellulases was 5.5 in a range of temperature from $0^{\circ}C$ to $55^{\circ}C$. The best nutritions for the cellulase production of S. commune among tested nutrients were 2% cellulose for the carbon source and corn steep liquor or peptone/yeast extract for the nitrogen source without vitamins. The environmental culture condition for the cellulase production was 5.5~6.0 for pH at $25{\sim}30^{\circ}C$. The enzyme activities of EG, BGL, CBH, and BXL were 3670.5, 631.9, 398.5, and 15.2 U/$m{\ell}$, respectively, after concentration forty times from the culture broth of S. commune which was grown at the optimized culture condition. Alternative filter paper unit assay showed 11 FPU/$m{\ell}$ enzyme activity. The saccharification tests using cellulase of S. commune showed the low saccharification rate on tested hardwoods but a high value of 50.5% on cellulose, respectively. The saccharification rate (50.5%) of cellulose by cellulase produced in this work is higher than 45.7% in the commercial enzyme (Celluclast 1.5L, 30 FPU/g, glucan).

Modulation of Cellulalr Quinone Reductase Inducibility by Roasting Treatment and Acid Hydrolysis of Perilla (들깨의 볶음처리와 산가수분해에 의한 세포모델계 Quinone Reductase 활성유도능의 변화)

  • Hong, Eun-Young;Kang, Hee-Jung;Kwon, Chong-Suk;Nam, Young-Jung;Suh, Myung-Ja;Kim, Jong-Sang
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.2
    • /
    • pp.186-192
    • /
    • 1997
  • Increased activities of phase 2 enzymes including quinone reductase(QR) have been reported to be associated with protection of animals from neoplastic, mutagenic, and other toxic effects of many carcinogens. In previous study, we found that methanol extract of roasted and defatted perilla meal induced the activity of quinone reductase, an anticarcinogenic marker enzyme, in murine hepalc1c7 cells. Current study showed that unroasted perilla had a limited QR-inducing activity, suggesting that roasting cause the generation of active component(s). Thus we hypothesized that QR inducer in perilla might be covalently linked to sugar moiety and released during roasting process. Methanol extract of defatted raw perilla was subject to acid treatment in order to hydrolyze the potential sugar moiety. Prolonged hydrolysis of methanol extract of defatted raw perilla at $98{\sim}100^{\circ}C$ increased the ability to induce cytosolic QR activity of hepalclc7 cells. Furthermore roasting at 180 and $200^{\circ}C$ resulted in significant induction of QR activity. The result strongly support the idea that QR inducer(s) is present in bound form in raw perilla and released during roasting. Cellular QR activity was induced proportionately with the increase of concentration of methanol extract of roasted perilla. The induction of QR by defatted perilla was also examined in the cytosols of liver, small intestine, stomach, lung and kidney of male ICR mice. Induction patterns showed specificity with respect to target tissue and roasting of perilla. Unroasted perilla meal (defatted) significantly induced QR in liver and lung, while roasted perilla meal induced QR in liver and stomach. The observation that raw perilla showed similar QR induction patterns to roasted perilla is consistent with our proposal that QR inducer(s) is present in bound form and released by physical and chemical treatments as digestive or microbial enzymes could release the inducers from inactive glycoside forms in gastrointestinal tract of mice. In conclusion, perilla could exert protective effect against chemically induced carcinogenesis by inducing phase 2 enzymes in biological systems regardless of chemical and physical process such as roasting.

  • PDF

Enzymatic characterization of Paenibacillus amylolyticus xylanases GH10 and GH30 for xylan hydrolysis (Paenibacillus amylolyticus 유래 xylanase GH10 및 GH30의 xylan 가수분해 특성)

  • Nam, Gyeong-Hwa;Jang, Myoung-Uoon;Kim, Min-Jeong;Lee, Jung-Min;Lee, Min-Jae;Kim, Tae-Jip
    • Korean Journal of Microbiology
    • /
    • v.52 no.4
    • /
    • pp.463-470
    • /
    • 2016
  • The enzymatic degradation of xylans is the most versatile way to obtain the high value-added functional compounds or the fermentable sugars for renewable energy. The endo-${\beta}$-xylanases are the major enzymes which hydrolyze the internal ${\beta}$-1,4-linkages of xylan backbones to produce the mixtures of xylooligosaccharides including xylobiose and xylotriose. Among them, glucuronoxylanase GH30 can exclusively hydrolyze the internal ${\beta}$-1,4-linkages of xylans decorated with methylglucuronic acid branches. In the present study, two xylanolytic enzyme (PaXN_10 and PaGuXN_30) genes were cloned from Paenibacillus amylolyticus KCTC 3005, and expressed in Escherichia coli, respectively. PaXN_10 (38.7 kDa) belongs to the endo-${\beta}$-xylanases GH10 family, while PaGuXN_30 (58.5 kDa) is a member of glucuronoxylanase GH30. They share the same optimal reaction conditions at $50^{\circ}C$ and pH 7.0. Enzymatic characterization proposed that P. amylolyticus can utilize the hardwood glucuronoarabinoxylans via the cooperative actions of xylanases GH10 and GH30. The extracellular PaGuXN_30 is secreted into the medium and hydrolyzes glucuronoarabinoxylans to release a series of aldouronic acid mixtures with a methylglucuronic acid branch. The resultant products being transported into the microbial cell are successively degraded into the smaller xylooligosaccharides by the intracellular PaXN_10, which will be utilized for the cellular metabolism.

PROCESSING OF DRILL SOLUBLE AND ITS AMINO ACID COMPOSITION (Krill solube의 가공 및 아미노산 조성)

  • LEE Eung-Ho;KIM Se-Kwon;CHO Duck-Jae;HAN Bong-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.12 no.4
    • /
    • pp.235-240
    • /
    • 1979
  • A study on the amino acid composition of raw frozen krill, and krill solubles manufactured in forms of paste and powder has been carried out. The raw frozen krill was thawed, chopped, mixed and homogenized with same amount of water. The mixture was autolyzed or hydrolyzed by tile addition of $0.2\%$ pronase-p, a commercial proteolytic enzyme, to the weight of the raw frozen krill at $45^{\circ}C$ for 4 hours. After a thermal inactivation of enzymes at $95^{\circ}C$ for 15 minutes, the autolysate and the hydrolysate were centrifuged and filtered through gauzes, respectively, and then tile lipid layer in the supernatant was removed, The autolysate and the hydrolysate were finally concentrated under reduced atmospheric pressure in a rotary vacuum evaporator at $45^{\circ}C$ for 1 hour to produce the krill solubles in form of paste. The powdered krill solubles were prepared by the addition of $5\%$ starch to the autolysate and hydrolysate and by means of concentration in the rotary vacuum evaporator at $45^{\circ}C$ for 30 minutes and a forced air drying at $58^{\circ}C$ for 3 hours with a air velocity of 3m/sec. Among the amino acids in raw frozen krill, glutamic acid, lysine, and aspartic acid showed high values in quantity and then followed leucine, alanine, arginine, glycine and proline. The qnantity of histidine was very small and that of cystine was only in trace. The krill solubles in forms of paste and powder prepared by autolysis and hydrolysis with pronase-p revealed almost the same patterns in amino acid composition as in raw frozen krill. In case of free amino acids, a large quantity of it in raw frozen krill consisted of lysine, arginine, proline, alanine and leucine. The quantities of cystine, histidine and glutamic acid were, in contrast, very small. In the soluble krill paste prepared by autolysis, lysine, leucine, threonine and alanine existed in large quantities among the free amino acids and cystine, aspartic acid and histidine existed in small quantities. The contents of almost all of the free amino acids ill soluble krill paste perpared by hydrolysis with pronase-p were increased slightly as compared with those in soluble krill paste prepared by autolysis. In this product, the contents of cystine, histidine and serine were very low and lysine, leucine, arginine and proline were the dominant group in quantities among the free amino acids. The krill solubles in forms of paste and powder were not inferior to whole egg in the view point of its essential amino acid composition.

  • PDF

Physiological Roles of Phospholipase Cγ and Its Mutations in Human Disease (Phospholipase Cγ의 생리적 기능과 질병과 연관된 돌연변이)

  • Jang, Hyun-Jun;Choi, Jang Hyun;Chang, Jong-Soo
    • Journal of Life Science
    • /
    • v.30 no.9
    • /
    • pp.826-833
    • /
    • 2020
  • Phospholipase C gamma (PLCγ) has critical roles in receptor tyrosine kinase- and non-receptor tyrosine kinase-mediated cellular signaling relating to the hydrolysis of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] to produce inositol 1,4,5 trisphosphate (IP3) and diacylglycerol (DAG), which promote protein kinase C (PKC) and Ca2+ signaling to their downstream cellular targets. PLCγ has two isozymes called PLCγ1 and PLCγ2, which control cell growth and differentiation. In addition to catalytically active X- and Y-domains, both isotypes contain two Src homology 2 (SH2) domains and an SH3 domain for protein-protein interaction when the cells are activated by ligand stimulation. PLCγ also contains two pleckstrin homology (PH) domains for membrane-associated phosphoinositide binding and protein-protein interactions. While PLCγ1 is widely expressed and appears to regulate intracellular signaling in many tissues, PLCγ2 expression is restricted to cells of hematopoietic systems and seems to play a role in the regulation of immune response. A distinct mechanism for PLCγ activation is linked to an increase in phosphorylation of specific tyrosine residue, Y783. Recent studies have demonstrated that PLCγ mutations are closely related to cancer, immune disease, and brain disorders. Our review focused on the physiological roles of PLCγ by means of its structure and enzyme activity and the pathological functions of PLCγ via mutational analysis obtained from various human diseases and PLCγ knockout mice.

Analysis Method of Parabens in Human Breast Milk by LC-MS/MS System (LC-MS/MS 시스템을 이용한 모유 중 파라벤류 분석법 확립)

  • Park, Na-Youn;Lee, Eun-Hee;Kho, Younglim
    • Journal of the Korean Chemical Society
    • /
    • v.60 no.2
    • /
    • pp.118-124
    • /
    • 2016
  • Parabens were commonly used for preventing the growth of microorganisms as preservatives in the pharmaceutical, cosmetic and food industry. Also, parabens are known endocrine disruptors because of their estrogenic effects on human. Parabens affect the endocrine system and show adverse effect such as, genital malformations, precocious puberty and testicular cancer in young children, infants and fetuses. In this study, we developed analytical method for four parabens (methyl paraben, ethyl paraben, propyl paraben, butyl paraben) in human breast milk which frequently consumed by newborn baby. The analytes were extracted using liquid-liquid extraction (LLE) after enzyme hydrolysis with protease and lipase, then quantitative analysis was performed by liquid chromatography tandem mass spectrometry (LC-MS/MS). The method validation results were as follows; the linearity of calibration curves were excellent with coefficient of determinations (r2) higher than 0.999, the limit of detections (LODs) were 0.019~0.044 ng/mL, the accuracies were 85.3~105.9% and the precisions were lower than 10%. The average concentration ± standard deviation of parabens in ten human breast milk sample were MP 0.660 ± 0.519 ng/mL, EP 1.631 ± 2.081 ng/mL and PP 0.326 ± 0.320 ng/mL, and BP was not detected.