An extracellular levansucrase, which catalyzes the formation of levan from sucrose, from the culture broth of Zymomonas mobilis ZM1 was purified by conventional column purification methods. The final purification yield was 18.3 fold of the crude enzyme from Z. mobilis, with 16.5 % of the enzyme recovered in the preparation step. The molecular weight of the enzyme was estimated to be 91,000 by Superose 12 gel filtration, and 45,000 by SDS-PAGE, indicating that levansucrase is a dimer. The optimum pH for the enzyme activity was around pH 4.0 for sucrose hydrolysis, and was around pH 5.0 for levan formation. The enzyme was inhibited by some metal ions, such as Hg$\^$2+/ and Cu2$\^$2+/, and 50% of inhibition was observed with 5mM EDTA. The enzyme activity was enhanced by the presence of detergent Triton X-100, but inhibited by SDS completely The enzyme catalyzes the liberation of reducing sugars, oligosacccharides and the formation of fructose polymer(levan). The enzyme also catalyzes the transfructosylation reaction of fructose moiety from sucrose to various sugar acceptor molecules, including sugar alcohols.
Seo, Ju-Seok;An, Ju-Hee;Cheong, Jong-Joo;Choi, Yang-Do;Kim, Chung-Ho
Journal of Microbiology and Biotechnology
/
v.18
no.9
/
pp.1544-1549
/
2008
MhMTS and MhMTH are trehalose ($\alpha$-D-glucopyranosyl-[1,1]-$\alpha$-D-glucopyranose) biosynthesis genes of the thermophilic microorganism Metallosphaera hakonensis, and encode a maltooligosyltrehalose synthase (MhMTS) and a maltooligosyltrehalose trehalohydrolase (MhMTH), respectively. In this study, the two genes were fused in-frame in a recombinant DNA, and expressed in Escherichia coli to produce a bifunctional fusion enzyme, MhMTSH. Similar to the two-step reactions with MhMTS and MhMTH, the fusion enzyme catalyzed the sequential reactions on maltopentaose, maltotriosyltrehalose formation, and following hydrolysis, producing trehalose and maltotriose. Optimum conditions for the fusion enzyme-catalyzed trehalose synthesis were around $70^{\circ}C$ and pH 5.0-6.0. The MhMTSH fusion enzyme exhibited a high degree of thermostability, retaining 80% of the activity when pre-incubated at $70^{\circ}C$ for 48 h. The stability was gradually abolished by incubating the fusion enzyme at above $80^{\circ}C$. The MhMTSH fusion enzyme was active on various sizes of maltooligosaccharides, extending its substrate specificity to soluble starch, the most abundant natural source of trehalose production.
Most carbohydrates exist in nature in an insoluble state, which reduces their susceptibility towards various carbohydrases. Accordingly, they require intensive pretreatment for structural modification to enhance an enzyme reaction. The direct conversion of insoluble carbohydrates has distinct advantages for special types of reaction, especially exo-type carbohydrase; however, its application is limited due to structural constraints. This paper introduces two novel heterogeneous enzyme reaction systems for direct conversion of insoluble carbohydrates; one is an attrition coupled enzyme reaction system containing attrition-milling media for enhancing the enzyme reaction, and the other is a heterogeneous enzyme reaction system using extruded starch as an insoluble substrate. The direct conversion of typically insoluble carbohydrates, including cellulose, starch, and chitin with their corresponding carbohydrases, including cellulase, amylase, chitinase, and cyclodextrin glucanotransferase, was carried out using two proposed enzyme reaction systems. The conceptual features of the systems, their reaction characteristics and mechanism, and the industrial applications of the various carbohydrates are analyzed in this review.
Ha, You-Mee;Jung, Young-Hee;Kwon, Dae-Young;Kim, Young-Soo;Kim, Chy-Kyung;Min, Kyung-Hee
Journal of Microbiology and Biotechnology
/
v.10
no.1
/
pp.35-42
/
2000
Reaction characteristics of 4-methylcatechol 2,3-dioxygenase (4MC230) purified from Pseudomonas putida SU10 with a higher activity toward 4-methylcatechol than catechol or 3-cethylcatechol were studied by altering their physical and chemical properties. The enzyme exhibited a maximum activity at pH 7.5 and approximately 40% at pH 6.0 for 4-methylcatechol hydrolysis. The optimum temperature for the enzyme was around $35^{\circ}C$, since the enzyme was unstable at higher temperature. Acetone(10%) stabilized the 4MC230. The effects of solvent and other chemicals (inactivator or reactivator) for the reactivation of the 4MC230 were also investigated. Silver nitrate and hydrogen peroxid severely deactivated the enzyme and the deactivation by hydrogen peroxide severely deactivated the enzyme and the deactivation by hydrogen peroxide was mainly due to the oxidation of ferrous ion to ferric ion. Some solvents acted as an activator and protector for the enzyme from deactivation by hydrogen peroxide. Ascorbate, cysteine, or ferrous ion reactivated the deactivated enzyme by hydrogen peroxide. The addition of ferrous ion together with a reducing agent fully recovered the enzyme activity and increased its activity abut 2 times.
Lactobacillus salivarius subsp. salivarius CNU27 possessed a high level of ${\alpha}$-galactosidase activity. Purified ${\alpha}$-galactosidase was obtained after sonication of harvested cell pellet followed by DEAE-Sephadex A-50 and Mono Q anion exchange chromatography. The specific activity of the purified enzyme was 8,994 units/mg protein which is 17.09 times higher than that in crude extract. The native enzyme was a monomer with a molecular mass of 56,397.1 dalton. The optimum temperature and pH for the enzyme were $40^{\circ}C$ and 6.0, respectively. The enzyme was stable between 25 and $50^{\circ}C$. However, ${\alpha}$-galactosidase activity was lost rapidly below pH 4.5 and above pH 8.5. The enzyme activity decreased to 6.73% and 4.30% of the original activity by addition of $Cu^{2+}$ and $Hg^{2+}$, respectively. Other metal compounds did not affect the enzyme activity significantly. The enzyme liberated galactose from melibiose, raffinose, and stachyose. The rate of substrates hydrolysis was measured by HPLC. Raffinose, stachyose and melibiose were completely decomposed after 24 hr at $40^{\circ}C$.
Enzymatic hydrolysis using an immobilized enzyme was carried out to produce chitosan oligosaccharides (COSs) from chitosan effectively. Chitosanase was immobilized on eight different carriers by physical adsorption. The enzyme immobilized on chitin had higher activity than those immobilized on the other carriers in spite of its lower adsorption. The activity of chitin-immobilized enzyme was more than 90% of the original activity. Optimal temperature of the immobilized enzyme increased by about $15^{\circ}C$ and its thermostability was excellent in relatively wide range of temperature. But its effects of pH did not improve compared to the free enzyme. The immobilized enzyme produced 153 mg/g chitosan of the reducing sugar for 3hrs of hydrolytic incubation time. The total content of higher oligomers, tetramer to hexamer, among amount of total COSs obtained for 2hrs was more than 90%. In kinetic parameters for both enzymes, immobilized enzyme showed lower affinity for substrate and reaction rate than free enzyme, however, no reduction of the rate for high substrate concentrations. Consequently, chitin-immobilized could effectively hydrolyse chitosan and produce the higher COSs without activity decrease in comparison with the free enzyme.
The properties of binding sites in the active site of $Zn^{2+}$-glycerophosphocholine cholinephosphodiesterase were examined using substrates and inhibitors of the enzyme. Phosphodiesterase hydrolyzed p-nitrophenylphosphocholine, p-aminophenylphosphocholine, and glycerophosphocholine, but did not hydrolyze either acylated glycerophosphocholine or bis (p-nitrophenyl)phosphate, suggesting a size limitation for interaction with a glyceryl moiety-binding subsite. The hydrolysis of p-nitrophenylphosphocholine was competitively inhibited by glycerophosphocholine and p-aminophenylphosphocholine, while glycerophosphoethanolamine was a weak inhibitor. The enzyme was also inhibited by choline, but not by ethanolamine. Thiocholine, a much more potent inhibitor than choline, was more inhibitory than cysteamine, suggesting a strict specificity of an anionic subsite adjacent to a $Zn^{2+}$ subsite. Of all oxyanions tested, the tellurite ion was found to strongly inhibit the enzyme by binding to a $Zn^{2+}$ subsite. The inhibitory role of tellurite was synergistically enhanced by tetraalkylammonium salts, but not by glycerol. Deactivation of the enzyme by diethylpyrocarbonate was partially protected by choline, but not by glycerophosphate. It is suggested that the active site of phosphodiesterase contains three binding subsites.
A bacterium producing pullulanase was from soil, and was identified Bacillus cereus and named as Bacillus cereus JK36. The optimal culture conditions for the efficident production of pullulanase from B. cereus JK36 was obtained by cultivating with the medium composed of 1% pullulan, 1% teast extract, 1% bactopeptone, 0.1% NaH$_{2}$PO$_{4}$, 2H$_{2}$O, 0.02% MgSO$_{4}$\ulcorner7H$_{2}$O at 40$\circ$C, initial pH 6.5 for 70 hours. Using the culture supernatant as crude enzyme, the optimal pH and temperature of the pullulanase of this strain were 6.5 and 50$\circ$C. In effect of pH and temperature on the stability of the enzyme, the enzyme was stable in the range of pH6.0$\sim$9.5 and up to 40$\circ$C, respectively. The hydrolysis product on pullulan was mainly maltotriose.
Alcalase hydrolysis of liquid egg white was used to produce 5-hydroxytryptophan (HTP) under various conditions and investigate the sleep-potentiating activity of liquid egg white hydrolysate (LEH) on pentobarbital-induced sleep. Alcalase hydrolysis yielded the highest content of 5-HTP ($13.50{\mu}g/mL$), while neutrase hydrolysis showed the lowest 5-HTP content ($5.23{\mu}g/mL$). The liquid egg white to water ratio (1:1) was optimal for the production of 5-HTP with high amino-nitrogen (A-N) content and degree of hydrolysis. The 5-HTP, amino-nitrogen, and degree of hydrolysis increased until 24 h of hydrolysis and slightly increased thereafter during hydrolysis with 2% and 5% enzyme addition. 5-HTP administration at doses of 6 and 9 mg/kg significantly increased sleep duration and decreased sleep latency time compared to that in the control (p<0.05). LEH (150 mg/mouse), which was equivalent to 5-HTP at 6 mg/kg, significantly decreased sleep latency time and increased sleep duration time compared to that in the control (p<0.05). Oral administration of LEH showed sleep-potentiating effects because of 5-HTP. The sleep-potentiating activity of LEH may have occurred through 5-HTP in our pentobarbital-induced sleep model. LEH may be a valuable alternative to sleep enhancement and may be used as a sleep-potentiating agent.
The study was carried out to investigate the variations in the fibroin hydrolysis of leading silkworm varieties in Korea, and the relationship between the fibroin hydrolysis of the silkworm varieties with some characteristics and silk morphological property. The results obtained are summarized as follows: 1) The fibroin hydrolyzing ratio of both parent silkworm cocoons was reduced in the F$_1$hybrids. 2) A positive corelation (r=+0.86) was approved between the mid-parent value and the F$_1$hybrid in the fibroin hydrolysis. 3) It was disclosed that the fibroin hydrolyzing ratio of Jam 103${\times}$Jam 104 was the lowest among the leading silkworm F$_1$hybrids. 4) The fibroin hydrolysis was affected by the silk morphological property, showing a positive corelation between the size of cocoon filament and the fibroin hydrolyzing ratio. 5) It was thought that the determination of the fibroin hydrolyzing ratio was useful as a marker for the selection of its related economical characters in silkworm breeding, because the fibroin hydrolysis of parents silkworm cocoons was heritable in their F$_1$hybrids.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.