Browse > Article

Bifunctional Recombinant Fusion Enzyme Between Maltooligosyltrehalose Synthase and Maltooligosyltrehalose Trehalohydrolase of Thermophilic Microorganism Metallosphaera hakonensis  

Seo, Ju-Seok (Department of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University)
An, Ju-Hee (Department of Food and Nutrition, Seowon University)
Cheong, Jong-Joo (Department of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University)
Choi, Yang-Do (Department of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University)
Kim, Chung-Ho (Department of Food and Nutrition, Seowon University)
Publication Information
Journal of Microbiology and Biotechnology / v.18, no.9, 2008 , pp. 1544-1549 More about this Journal
Abstract
MhMTS and MhMTH are trehalose ($\alpha$-D-glucopyranosyl-[1,1]-$\alpha$-D-glucopyranose) biosynthesis genes of the thermophilic microorganism Metallosphaera hakonensis, and encode a maltooligosyltrehalose synthase (MhMTS) and a maltooligosyltrehalose trehalohydrolase (MhMTH), respectively. In this study, the two genes were fused in-frame in a recombinant DNA, and expressed in Escherichia coli to produce a bifunctional fusion enzyme, MhMTSH. Similar to the two-step reactions with MhMTS and MhMTH, the fusion enzyme catalyzed the sequential reactions on maltopentaose, maltotriosyltrehalose formation, and following hydrolysis, producing trehalose and maltotriose. Optimum conditions for the fusion enzyme-catalyzed trehalose synthesis were around $70^{\circ}C$ and pH 5.0-6.0. The MhMTSH fusion enzyme exhibited a high degree of thermostability, retaining 80% of the activity when pre-incubated at $70^{\circ}C$ for 48 h. The stability was gradually abolished by incubating the fusion enzyme at above $80^{\circ}C$. The MhMTSH fusion enzyme was active on various sizes of maltooligosaccharides, extending its substrate specificity to soluble starch, the most abundant natural source of trehalose production.
Keywords
Trehalose; maltooligosyltrehalose synthase; maltooligosyltrehalose trehalohydrolase; bifunctional fusion enzyme; Metallosphaera hakonensis;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
Times Cited By Web Of Science : 3  (Related Records In Web of Science)
연도 인용수 순위
1 Kim, C. H. and Y. D. Choi. 1989. Identification of soybean glycinin precursor in vivo. Kor. J. Bot. 32: 51-65
2 Maruta, K., K. Hattori, T. Nakada, M. Kubota, T. Sugimoto, and M. Kurimoto. 1996. Cloning and sequencing of trehalose biosynthesis genes from Rhizobium sp. M-11. Biosci. Biotech. Biochem. 60: 717-720   DOI   ScienceOn
3 Seo, J.-S., J. H. An, M.-Y. Baik, C. S. Park, J.-J. Cheong, T. W. Moon, K. H. Park, Y. D. Choi, and C. H. Kim. 2007. Molecular cloning and characterization of trehalose biosynthesis genes from hyperthermophilic archaebacterium Metallosphaera hakonesis. J. Microbiol. Biotechnol. 17: 123-129   과학기술학회마을
4 Maruta, K., H. Mitsuzumi, T. Nakada, M. Kubota, H. Chaen, S. Fukuda, T. Sugimoto, and M. Kurimoto. 1996. Cloning and sequencing of a cluster of genes encoding novel enzymes of trehalose biosynthesis from thermophilic archaebacterium Sulfolobus acidocaldarius. Biochim. Biophys. Acta 1291: 177-181   DOI   ScienceOn
5 Kim, Y. H., T. K. Kwon, S. Park, H. S. Seo, J.-J. Cheong, C. H. Kim, J.-K. Kim, J. S. Lee, and Y. D. Choi. 2000. Trehalose synthesis by sequential reactions of recombinant maltooligosyltrehalose syntase and maltooligosyltrehalose trehalohydrolase from Brevibacterium helvolum. Appl. Environ. Microbiol. 66: 4620-4624   DOI   ScienceOn
6 Eastmond, P. J. and I. J. Graham. 2003. Trehalose metabolism: A regulatory role for trehalose-6-phosphate. Curr. Opin. Plant Biol. 6: 231-235   DOI   ScienceOn
7 Elbein, A. 1974. The metabolism of ${\alpha},{\alpha}-trehalose$. Adv. Carbohydr. Chem. Biochem. 30: 227-256   DOI   ScienceOn
8 Giaever, H. M., O. B. Styrvoid, I. Kaasen, and A. R. Strom. 1988. Biochemical and genetic characterization of osmoregulatory trehalose synthesis in Escherichia coli. J. Bacteriol. 170: 2841-2849   DOI
9 Streeter, J. G. and A. Bhagwat. 1999. Biosynthesis of trehalose from maltooligosaccharides in Rhizobia. Can. J. Microbiol. 45: 716-721   DOI   ScienceOn
10 Kim, C. H. 2000. Construction of bifunctional fusion enzyme between maltooligosyltrehalose synthase and maltooligosyltrehalose trehalohydrolase of Sulfolobus acidocaldarius and overexpression in E. coli. Agric. Chem. Biotechnol. 43: 240-245
11 Seo, H. S., Y. J. Koo, J. Y. Lim, J. T. Song, C. H. Kim, J. K. Kim, J. S. Lee, and Y. D. Choi. 2000. Characterization of a bifunctional enzyme fusion of trehalose-6-phosphate synthetase and trehalose-6-phosphate phosphatase of Escherichia coli. Appl. Environ. Microbiol. 66: 2484-2490   DOI   ScienceOn
12 Lama, L., B. Nicolaus, A. Trincone, P. Morzillo, M. De Rosa, and A. Gambacorta. 1990. Starch conversion with immobilized thermophilic archaebacterium Sulfolobus solfataricus. Biotechnol. Lett. 12: 431-432   DOI
13 Choi, J. J., J. W. Park, H. Shim, S. Lee, M. Kwon, J.-S. Yang, H. Hwang, and S.-T. Kwon. 2006. Cloning, expression, and characterization of a hyperalkaline phosphatase from the thermophilic bacterium Thermus sp. T351. J. Microbiol. Biotechnol. 16: 272-279   과학기술학회마을
14 Nakada, T., S. Ikegami, H. Chaen, M. Kubota, S. Fukuda, T. Sugimoto, M. Kurimoto, and Y. Tsujisaka. 1996. Purification and characterization of thermostable maltooligosyl trehalose synthase from the thermoacidophilic archaebacterium Sulfolobus acidocaldarius. Biosci. Biotech. Biochem. 60: 263-266   DOI   ScienceOn
15 Paik, S.-K., H.-S. Yun, H.-Y. Sohn, and I. Jin. 2003. Effect of trehalose accumulation on the intrinsic and acquired thermotolerance in a natural isolate, Saccharomyces cerevisiae KNU5377. J. Microbiol. Biotechnol. 13: 85-89
16 Van Laere, A. 1989. Trehalose, reserve and/or stress metabolite? FEMS Microbiol. Rev. 63: 201-210   DOI
17 Park, J.-E., K.-H. Lee, and D. Jahng. 2002. Effect of trehalose on bioluminescence and viability of freeze-dried bacterial cells. J. Microbiol. Biotechnol. 12: 349-353
18 Eleutherio, E. C. A., P. S. Araujo, and A. D. Panek. 1993. Protective role of trehalose during heat stress in Saccharomyces cerevisiae. Cryobiology 30: 591-596   DOI   ScienceOn
19 Nakada, T., S. Ikegami, H. Chaen, M. Kubota, S. Fukuda, T. Sugimoto, M. Kurimoto, and Y. Tsujisaka. 1996. Purification and characterization of thermostable maltooligosyl trehalose trehalohydrolase from the thermoacidophilic archaebacterium Sulfolobus acidocaldarius. Biosci. Biotech. Biochem. 60: 267-270   DOI   ScienceOn
20 Maruta, K., K. Hattori, T. Nakada, M. Kubota, T. Sugimoto, and M. Kurimoto. 1996. Cloning and sequencing of trehalose biosynthesis genes from Arthrobacter sp. Q36. Biochim. Biophys. Acta 1289: 10-13   DOI   ScienceOn
21 Mukai, K., A. Tabuchi, T. Nakada, T. Shibuya, H. Chaen, S. Fukuda, M. Kurimoto, and Y. Tsujisaka. 1997. Production of trehalose from starch by thermostable enzymes from Sulfolobus acidocaldarius. Starch 1: 26-30
22 Kobayash, K., M. Kato, Y. Miura, M. Kettoku, T. Komeda, and A. Iwamatsu. 1996. Gene cloning and expression of new trehalose-producing enzyme from the hyperthermophilic archaeum Sulfolobus solfataricus KM1. Biosci. Biotech. Biochem. 60: 1882-1885   DOI   ScienceOn