• Title/Summary/Keyword: enzyme activity by cadmium

Search Result 36, Processing Time 0.028 seconds

카드뮴이 카드뮴 내성 효모세포내의 효소 활성에 미치는 영향

  • 유대식;박은규;박정문
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.3
    • /
    • pp.268-273
    • /
    • 1996
  • An extremely cadmium tolerant yeast, Hansenula anomala B-7 used to determine the modification of the intracellular enzyme activities by cadmium ion. The activities of alcohol dehydrogenase, phosphofructokinase, and cytidine deaminase were decreased up to 90%, 40%, and 86% compa- red with the control by 1 mM cadmium nitrate respectively, but the activities of malate dehydrogenase, 6- phosphogluconate dehydrogenase, cytochrome c oxidase, and alkaline phosphatase were increased up to 440%, 136%, 260% and 155% compared with the control by 1 mM cadmium nitrate respectively. These results show that the activities of the enzymes participating in Embden-Mayerhof pathway (e.g. anaerobic metabolism) were reduced by cadmium, but those involved in hexose monophosphate pathway and tricarboxylic acid cycle (e.g. aerobic metabolism) were stimulated in contrast. It has been suggested that the diminished activity of cytidine deaminase in pyrimidine nucleotide dissimilation occured due to the inhibited nucleotide dissimilation by cadmium ion; the enhanced activity of cytochrome c oxidase was specifically required in order to oxidize a raised amount of NADH and NADPH due to the increased aerobic metabolism.

  • PDF

A Study on the Effect of Chitin, Chitosan and Dithiocarbamate Chitosan on the Cadmium Accumulation in Liver of Rats (Chitin 및 Chitosan이 생체내 카드뮴 축적에 미치는 영향 -Chitin, Chitosan 및 Dithiocarbamate Chitosan이 흰쥐 간내 카드뮴 축적에 미치는 영향-)

  • 유일수;류문희;이종섭
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.2
    • /
    • pp.47-56
    • /
    • 1998
  • When rats are exposed to cadmium in their diet, the cadmium accumulates in the liver. This study was carried out to investigate the effect of chitin, chitosan and dithiocarbamate chitosan on the cadmium accumulation in liver of rats. For this experiment, 10 male Sprague-Dawley were used. The experimental groups were divided into four independent groups which were one control group and three experimental groups by cadmium alone treatment or chitin, chitosan and dithiocarbamate chitosan with cadmium. In order to investigate the eliminative effect of chitin, chitosan and dithiocarbamate chitosan on the cadmium accumulation in liver of rats, the cadmium concentration, the metallothionein level and the enzyme activitys were measured. The results obtained revealed the eliminative effect of cadmium in liver of rats by chitin, chitosan and dithiocarbamate chitosan. The effect of chitin on the cadmium elimination was less than that of chitosan and dithiocarbamate chitosan. Also it shows that the eliminative effect of cadmium by dithiocarbamate chitosan was the highest.

  • PDF

Protective Effects of Chitosan on the Cadmium Cytotoxicity in Rat Glioma Cells (흰쥐 신경교종세포에서 카드뮴 세포독성에 대한 키토산의 효과)

  • 백용아;이정래;김강득;김혜원;이한솔;허정무;오재민;최민규;정연태
    • Toxicological Research
    • /
    • v.20 no.1
    • /
    • pp.63-69
    • /
    • 2004
  • Casapse-3 protease is known as a key role of apoptotic enzyme, and caspase-3 activity is a central event that occurs upstream of DNA fragmentation during apoptosis. This study demonstrates that chitosan pretreatment inhibits cadmium-induced apoptosis by attenuating the activity of caspase-3. We also analyzed the protective effect of chitosan on DNA fragmentation induced by cadmium. Cadmium toxicity was examined by DNA fragmentation and nuclear condensation with Hoechst stain. Caspase-3 activities were increased cadmium treated group for 3 hours compared with control. When chitosan (150 mg/ml) was pretreated at 30 min before cadmium treatment, cadmium cytotoxicity was suppressed in a dose-dependent manner evaluated by DNA fragmentation and caspase activity. From these results, it is suggest that the protective effect of chitosan pretreatment against cadmium-induced cytotoxicity is mediated through inhibition of caspase-3 protease activation and DNA fragmentation.

Effects of Cadmium and Cadmium Binding Protein on the Respiration of Mitochondria of Rat Kidney (흰쥐 신장의 미토콘드리아 호흡에 미치는 Cadmium과 Cadmium Binding Protein의 영향)

  • Cho, Hae-Kyoung;Boo, Moon-Jong;Choe, Rim-Soon
    • Applied Microscopy
    • /
    • v.19 no.2
    • /
    • pp.59-73
    • /
    • 1989
  • To investigate the effect of cadmium and cadmium binding protein on the electron transport system and conformational changes of rat kidney mitochondria, various cadmium concentration were treated in vitro and respiration rate, NADH-CoQ reductase activity were measured. Ultrastructural changes at state IV respiration were also observed. CdBP was isolated from the rat liver by Sephadex G-75 column fractionation and treated in vitro with cadmium. Also mitochondrial state IV respiration rate was measured. When cadmium was treated in vitro, state IV respiration and enzyme activity were decreased and ultrastructural transformation of mitochondria from a condensed to an orthodox conformation was inhibited under state IV respiration. In case cadmium and CdBP were treated together, oxygen consumption was more increased than cadmium only. Conformational changes of mitochondria from a condensed to orthodox conformation were also observed. This indicates that CdBP have a protective effect against cadmium toxicity.

  • PDF

Effect of Cadmium on Phospholipied Metabolism in Nervous System (카드뮴이 신겨중 인지질 대사에 미치는 영향)

  • 곽영규;노종수
    • Journal of environmental and Sanitary engineering
    • /
    • v.14 no.1
    • /
    • pp.88-96
    • /
    • 1999
  • The effect of acute cadmium-neuropathy on phospholipid metabolism in rat sciatic nerve was investigated. An animal model of cadmium neuropathy was induced by feeding diet containing cadmium to Sprague-Dawley rat for two weeks. Four weeks aged Sprague-Dawley rats were divided into four groups : normal control group, 10ppm-cadmium treated group, 100ppm-cadmium treated group, 1000ppm-cadmium treated group, reference drug, myo-inositol-treated group. All rats were sacrificed at the end of two weeks. The rate of incorporation of 2-[3H]myo-inositol into polyphosphinositide was significantly decreased while the rates of incorporation into phospholipid of titratedserine, ethanolamine and choline were unchanged in sciatic nerve obtained from cadmium-treated rat. Continuously the activities of three enzymes concerned with inositol phospholiped metabolism were measured in homogenates of rat sciatic nerves. Cystidine diglyceride transferase and phophatidylinositol kinase showed significantly decreased activities while phosphatidylinositol-4-phosphate kinase did not show any significant change in activity by cadmium treatment. However these deficits of inositol phospholipid metabolism were ameliorated by myo-inositol administration and these effectiveness were more potent in lower dose cadmiumtreated rats than higher dose cadmium-treated rats. These results suggest that cadmium intoxicated peripheral nerve with perturbation of the ployphosphoinositide metabolism and alteration of the enzyme activity which concerned with myo-inositol metabolism.

  • PDF

Hepatocyte protection and antioxidant effect of Citri Unshius Pericarpium against cadmium-induced oxidative stress (카드뮴으로 유발된 산화 스트레스에 대한 진피의 간세포 보호 및 항산화 효과)

  • Noh, Gyu Pyo;Byun, Sung Hui;Jung, Dae Hwa;Lee, Jong Rok;Park, Sook Jahr;Kim, Sang Chan
    • Herbal Formula Science
    • /
    • v.28 no.4
    • /
    • pp.327-337
    • /
    • 2020
  • Objective : Citri Unshius Pericarpium is the dried peel of mature fruit of Citrus unshiu Markovich and has been used to treat indigestion, vomiting, and removal of phlegm. This study investigated the hepatoprotective and antioxidant effect of CEE (Ethanol extract of Citri Unshius Pericarpium) in cadmium (CdCl2)-treated HepG2 cells. Methods : Component analysis of Citri Unshius Pericarpium was analyzed by UPLC with C18 column. Cell viability was determined by MTT assay. The enzyme activity of superoxide dismutase (SOD) and the level of reactive oxygen species (ROS) and reduced glutathione (GSH) were analyzed using commercially available kits. Results : Cadmium caused severe HepG2 cell death. Cadmium also increased ROS production, consistent with depletion of GSH and inhibition of the SOD enzyme. However, CEE treatment reduced cell death and relieved oxidative stress caused by cadmium toxicity. CEE lowered ROS levels and improved depletion of GSH levels. CEE also enhanced the enzymatic activity of SOD. In component analysis, hesperidin was the most abundant of the five marker compounds (Narigenin, Narigin, Narirutin, Hesperidin and Hesperidin), which assumes that hesperidin partially contributed to the antioxidant activity of CEE. Conclusion : These results suggested that CEE could be a potential substance to solve heavy metal-related health problems. In particular, inhibition of oxidative stress by CEE can be a way to treat liver damage caused by cadmium.

The Effect of Hydrogen Peroxide-Treated Metallothionein on the Hepatic Xanthine Oxidase Activity

  • Huh, Keun;Shin, Uk-Seob;Lee, Sang-Il
    • BMB Reports
    • /
    • v.28 no.6
    • /
    • pp.490-493
    • /
    • 1995
  • We investigated the effect of hydrogen peroxide-treated metallothionein on the hepatic xanthine oxidase activity in vitro. When the metallothionein was preincubated with 1 mM of hydrogen peroxide, the activity of xanthine oxidase and type conversion were elevated dose-dependently by the addition of metallothionein into the reaction mixture. While increasing the treatment of hydrogen peroxide to the $50{\mu}g$of metallothionein, the xanthine oxidase activity and type conversion ratio were remarkably elevated dose dependently compared to the control. When cadmium ion was added to the reaction mixture, the increasing pattern of the enzyme activity was similar to the effect of hydrogen peroxide-treated metallothionein. DTT or penicillamine restored the increasing activity and type conversion of xanthine oxidase by the cadmium ion to the control level.

  • PDF

Effects of antioxidant enzymes and bioaccumulation in eels (Anguilla japonica) by acute exposure of waterborne cadmium

  • Ahn, Tae-Young;Park, Hee-Ju;Kim, Jun-Hwan;Kang, Ju-Chan
    • Fisheries and Aquatic Sciences
    • /
    • v.23 no.8
    • /
    • pp.23.1-23.10
    • /
    • 2020
  • This study was conducted to evaluate the acute effects of waterborne cadmium exposure on bioaccumulation and antioxidant enzymes in eels (Anguilla japonica) and to determine the median lethal concentration (LC50). Fish were exposed to different cadmium concentrations (0, 0.15, 0.30, 0.61, 1.83, 3.08, 3.67, 4.29, and 5.51 mg L-1) for 96 h. The LC50 of A. japonica to cadmium was 3.61 mg L-1. Cadmium accumulation generally increased in tissues with increasing waterborne cadmium concentrations. At ≥ 1.83 mg L-1 exposure, all tissues accumulated significant cadmium concentrations compared with the control group, in the order of kidney > liver > gill > spleen > muscle. Measurements of variation in actual cadmium concentrations showed that a reduction of the metal in experimental water was related to cadmium accumulation in tissues. As activity alteration of antioxidant enzymes for reactive oxygen species, superoxide dismutase and catalase activities increased at ≥ 0.61 mg L-1 significantly, glutathione peroxidase and glutathione S-transferase activities were not significantly changed. The results of this study suggest that acute exposure to waterborne cadmium is potentially fatal to A. japonica due to the metal's major accumulation in various tissues and the effect of antioxidant enzyme activity.

Effects of Cadmium on Heat Shock Protein Induction and on Clinical Indices in Rats (카드뮴이 랫드의 Heat Shock Protein 발현에 미치는 영향과 독성학적 변화에 관한 연구)

  • 김판기
    • Journal of Environmental Health Sciences
    • /
    • v.22 no.4
    • /
    • pp.91-101
    • /
    • 1996
  • Exposure indices are important tools which enable scientists to reliably predict and detect exposures to xenobiotics and resultant cell injury. Since the de novo synthesis of stress proteins can be detected early after exposure to some agents, analysis of toxicant-induced changes in gene expression, i.e. alterations in patterns of protein synthesis, may be useful to develop as biomarkers of exposure and toxicity. The acute and chronic effects of cadmium(Cd, $CdCl_2$ 20 mg/kg) on Wistar male rats were evaluated concerning cadmium contents, tissues enzyme activity, HSP expression. The results of the study were as follows: 1. Less cadmium was absorbed through the digestive tracts, but the ratio of contents in renal to hepatic cadmium was higher at 8 weeks after treatment. 2. ALT(alanine aminotransferase), AST(aspartate aminotransferase), glucose, BUN(blood urea nitrogen), creatinine, the key indices of the clinical changes in hepatic and renal function were significantly changed by the cadmium treatment after 1 week in liver, after 4 weeks in kidney. 3. Enhanced synthesis of 70 KDa relative molecular mass proteins were detected in 2 hours after cadmium exposure, with maximum activity occurring at 8~48 hours. Induction of $HSP_{70}$ was evident at proximal tubules and glomeruli in kidney. Testicular cells produced enough HSP to be detected normally. From the above results, it could be concluded that $HSP_{70}$ induction by the cadmium treatment was a rapid reaction to indicate the exposure of xenobiotics.

  • PDF

Changes in Antioxidant Enzyme Activity and Physiological Responses to Cadmium and Tributyltin Exposure in the Ark Shell, Scapharca Broughtonii

  • An, Myung-In;An, Kwang-Wook;Choi, Cheol-Young
    • Molecular & Cellular Toxicology
    • /
    • v.5 no.4
    • /
    • pp.273-282
    • /
    • 2009
  • Cadmium (Cd) and tributyltin (TBT) are common contaminants of marine and freshwater ecosystems, and can induce the formation of reactive oxygen species (ROS). These ROS can, in turn, cause oxidative stress. In the present study, we investigated time-related effects of Cd (0.05 and 0.1 ppm) and TBT (5 and 10 ppb) treatment on antioxidant enzyme activity, i.e., the activity of superoxide dismutase (SOD) and catalase (CAT) in the gills and digestive glands of the ark shell, Scapharca broughtonii. In addition, hydrogen peroxide ($H_2O_2$) concentrations, lysozyme activity, and glutamate oxaloacetate transaminase (GOT) and glutamate pyruvate transaminase (GPT) levels were measured in the hemolymph. We found that Cd and TBT treatment significantly increased antioxidant enzyme mRNA expression and activity in the digestive glands and gills in a time-dependent manner. In response to the Cd and TBT treatments, antioxidant enzymes mRNA expression and activity increased up to day 5 in the digestive glands and then decreased by day 7. In the gills, antioxidant enzymes mRNA expression and activity increased up to day 3 and then decreased by day 5. Likewise, $H_2O_2$ concentrations significantly increased up to day 5 and then decreased by day 7. Finally, lysozyme activity decreased during the experimental period, whereas GOT and GPT levels were significantly increased in a time-dependent manner. These results suggest that antioxidant enzymes play an important role in decreasing ROS levels and oxidative stress in ark shells exposed to Cd and TBT.