• Title/Summary/Keyword: enzymatic treatment

Search Result 586, Processing Time 0.037 seconds

Production of Spirulina Extract by Enzymatic Hydrolysis (효소 가수분해 방법을 이용한 스피루리나 추출물의 제조)

  • In, Man-Jin;Gwon, Su-Yeon;Chae, Hee-Jeong;Kim, Dong-Chung;Kim, Dong-Ho
    • Applied Biological Chemistry
    • /
    • v.50 no.4
    • /
    • pp.304-307
    • /
    • 2007
  • An efficient production method of spirulina extract was developed by enzymatic treatment using cell lytic and proteolytic enzymes. The suitable dosage of Tunicase, a cell lytic enzyme, was found to be 2.0% (w/w). Proteolytic enzymes were screened to obtain high solid recovery and spirulina extraction (SE) index, which indicates nucleic acid-related substances content. Among the seven tested proteases, Esperase was selected and optimal dosage of this enzyme was 2.0% (w/w). The solid recovery and SE index of simultaneous treatment and co-treatment using optimal dosages of Tunicase and Esperase were greatly similar, respectively. However, co-treatment had the effect of shortening total hydrolysis time. The SE index and solid recovery of co-treatment were significantly enhanced by 75% $(11.4{\rightarrow}20.0)$ and 45% $(45.2%{\rightarrow}65.3%)$, respectively, than those of the non-treated extracts.

Strength Restoration of The DP Finished Cotton Fabric by Enzymatic Treatment (수지 가공 면직물의 강도 회복을 위한 효소처리 연구)

  • 전미선;김주혜;박명자
    • The Research Journal of the Costume Culture
    • /
    • v.12 no.5
    • /
    • pp.737-742
    • /
    • 2004
  • The purpose of this study is restoration for tearing strength of the durable press (DP) finished 100% cotton fabric by enzymatic treatment. Dimethylol Dihydroxy Ethylene Urea (DMDHEU) was used as a DP finish chemical. Enzymes (cellulase, pectinase, protease, lipolase) were selected based on their specific reaction activities. Ideal application of the enzymes for this work was to remove cross-links created by DMDHEU on the surface of the fibers to offer migration property between microstructures of cellulose, yet cross-links that exist inside of the fibers are still remained to impart effect of wrinkle resistance. Physical characteristics (tearing strength, wrinkle recovery, FT-IR) of enzyme treated samples were measured and compared. It was found out that, in case of enzyme treatment, most of enzymes didn't have a great effect on tearing strength, but, in case of Protease, tearing strength increased at DMDHEU 2% treatment. As a result of an experiment on wrinkle recovery of the textiles treated with enzyme making density of DMDHEU different whenever respective experiment was made, it was discovered that density of DMDHEU increased as wrinkle recovery increased and, in the relation to enzyme treatment especially in Lipase enzyme treatment, the lesser density of DMDHEU, the more wrinkle recovery increased.

  • PDF

Bio-polishing and Silket Treatment of Cotton Yarns (면사의 효소가공 및 실켓 가공)

  • Bae, Young-Hwan;Lee, Ji-Wan;Son, Young-A;Kim, Ju-Hae;Kwon, Mi-Yeon;Kim, Eui-Hwa;Lee, Seung-Goo
    • Textile Coloration and Finishing
    • /
    • v.20 no.4
    • /
    • pp.15-20
    • /
    • 2008
  • The cotton yarn was subjected to bio-polishing treatment with three commercial enzymes(Cellusoft L, Denimax-991L and Denimax-acid) to remove the fuzz on the cotton yarn. Also, enzyme treated cotton yarns were compared with singeing cotton yarns. Experimental variables of enzyme treated cotton yarn were as follow: concentration of enzyme solution and NaOH, dipping time, and processing temperature. The enzymatic treatments were evaluated by analyzing the effect on yarn count, twist contraction, evenness and tenacity. As the results, enzymatic treatment on cotton yarn induced same effects as the traditional singeing treatment. Also, silket treatment of cotton yarn after bio-polishing enhanced the tensile properties of the cotton yarn.

Optimization of Enzymatic Pretreatment for the Production of Fermented Ginseng using Leaves, Stems and Roots of Ginseng

  • Cho, Kyung-Lae;Woo, Hye-Jin;Lee, In-Sook;Lee, Jun-Won;Cho, Young-Cheol;Lee, Il-Nam;Chae, Hee-Jeong
    • Journal of Ginseng Research
    • /
    • v.34 no.1
    • /
    • pp.68-75
    • /
    • 2010
  • This study sought to optimize the extraction and enzymatic treatment conditions of Panax ginseng leaves, stems, and roots for the production of fermented ginseng. The optimization enhanced the extraction of total saccharide, a nutrient and growth-activating factor for Lactobacillus bacteria. The hydrolysis of ginseng leaves, stems, and roots was tested with eight enzymes (Pentopan, Promozyme, Celluclast, Ultraflo, Pectinex, Ceremix, Viscozyme, and Tunicase). The enzymatic hydrolysis conditions were statistically optimized by the experimental design. Optimal particle size of ginseng raw material was <0.15 mm, and optimal hydrolysis occurred at a pH of 5.0-5.5, a reaction temperature of 55-$60^{\circ}C$, a Ceremix concentration of 1%, and a reaction time of 2 hr. Ceremix produced the highest dry matter yield and total saccharide extraction. Ginseng leaves were found to be the most suitable raw material for the production of fermented ginseng because they have higher carbohydrate and crude saponin contents than ginseng roots.

Preparation of Egg White Liquid Hydrolysate (ELH) and Its Radical-Scavenging Activity

  • Noh, Dong Ouk;Suh, Hyung Joo
    • Preventive Nutrition and Food Science
    • /
    • v.20 no.3
    • /
    • pp.183-189
    • /
    • 2015
  • In the present study, an optimum protease was selected to hydrolyze the egg white liquid protein for the antioxidant peptides. Alcalase treatment yielded the highest amount of ${\alpha}$-amino groups (15.27 mg/mL), while the control (no enzymatic hydrolysis) showed the lowest amount of ${\alpha}$-amino groups (1.53 mg/mL). Alcalase also gave the highest degree of hydrolysis (DH) value (43.2%) and was more efficient for egg white liquid hydrolysis than the other enzymes. The Alcalase hydrolysate had the highest radical-scavenging activity (82.5%) at a concentration of 5.0 mg/mL. The conditions for enzymatic hydrolysis of egg white liquid with Alcalase were selected as substrate : water ratio of 2:1. Five percent Alacalse treatment did not show significant (P>0.05) increases of DH and ${\alpha}$-amino nitrogen content after 24 hhydrolysis. Thirty two hour-hydrolysis with 5% Alcalase is sufficient to make antioxidative egg white liquid hydrolysate from egg white liquid. DPPH and ABTS radical-scavenging activities were significantly (P<0.05) higher after enzymatic digestion. These results suggest that active peptides released from egg-white protein are effective radical-scavengers. Thus, this approach may be useful for the preparation of potent antioxidant products.

Enzymatic preparation and antioxidant activities of protein hydrolysates from hemp (Cannabis sativa L.) seeds

  • Hyeon-Ji Yoon;Gyu-Hyeon Park;Yu-Rim Lee;Jeong-Min Lee;Hyun-Lim Ahn;Syng-Ook Lee
    • Food Science and Preservation
    • /
    • v.30 no.3
    • /
    • pp.434-445
    • /
    • 2023
  • Hemp (Cannabis sativa L.) seeds have recently been attracting attention as a new high-value-added food material owing to their excellent nutritional properties, and research on the development of functional food materials using hemp seeds is actively progressing. This study aimed to evaluate the antioxidant properties of hemp seed protein hydrolysates. Protein hydrolysates were prepared from defatted hemp seed powder (HS) by enzymatic hydrolysis using five different proteases (alcalase, bromelain, flavourzyme, neutrase, and papain). 2,4,6-trinitrobenzene sulfonic acid (TNBS) assay and SDS-PAGE analysis revealed that HS showed a high degree of hydrolysis after treatment with each enzyme except papain. The total polyphenol content of the protein hydrolysates (<3 kDa) and the RC50 values obtained from two different antioxidant tests showed that alcalase hydrolysate (HSA) had a relatively high level of antioxidant capacity. In addition, treatment with HSA (25-100 ㎍/mL) significantly inhibited linoleic acid peroxidation. These results suggest that hemp seed protein hydrolysates are potential sources of natural antioxidants. Future studies will focus on the identification of active peptides from HSA.

Effects of Treatments with Two Lipolytic Enzymes on Cotton/Polyester Blend Fabrics

  • Lee, So Hee;Song, Wha Soon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.37 no.8
    • /
    • pp.1107-1116
    • /
    • 2013
  • This study examined the use of cutinase and lipase to process cotton/polyester blend fabric. Optimum treatment conditions for cutinase and lipase were investigated for cotton/polyester blend fabric. The properties of enzyme-treated fabrics were evaluated and compared in optimal treatment conditions. In addition, the possibility to provide an enzymatic finishing on blend fabrics using mixed enzymes in a two-step process were studied. The weight loss of cotton/polyester blend fabrics with Triton X-100 was 0.8% and the dyeing property of blend fabrics with calcium chloride increased by a factor of 1.2. The use of two enzymes in combination with cutinase and lipase in the presence of auxiliaries resulted in a cotton/polyester blend fabric weight loss of 0.8%. In addition, the dyeing properties of cotton/polyester blend fabrics improved by a factor of 1.5 and the moisture regain of cotton/polyester blend fabrics improved by a factor of 1.16. However, no marked loss was observed in tensile strength. The surface morphology of cotton/polyester blend fabrics is modified through a two-enzyme treatment. The treatment of cotton/polyester blend fabrics with cutinase and lipase maintains cotton strength and improves the moisture regain of polyester fabrics.

Combined Aqueous Ammonia-Dilute Sulfuric Acid Pretreatment of Miscanthus for Bioethanol Production (바이오에탄올 제조를 위한 억새의 암모니아-희황산 복합 전처리)

  • Bark, Surn-Teh;Koo, Bon-Cheol;Choi, Yong-Hwan;Moon, Youn-Ho;Ahn, Seung-Hyun;Cha, Young-Lok;Kim, Jung Kon;An, Gi Hong;Suh, Sae-Jung;Park, Don-Hee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.179.1-179.1
    • /
    • 2011
  • Pretreatment of cellulosic biomass is necessary before enzymatic saccharification and fermentation. The objective of this study was to evaluate the effect of combined aqueous ammonia-dilute sulfuric acid treatment on cellulosic biomass. Miscanthus was pretreated using aqueous ammonia and dilute sulfuric acid solution under high temperature and pressure conditions to be converted into bioethanol. Aqueous ammonia treatment was performed with 15 %(w/w) ammonia solution at $150^{\circ}C$ of reaction temperature and 20 minutes of reaction time. And then, dilute sulfuric acid treatment was performed with 1.0 %(w/w) sulfuric acid solution at $150^{\circ}C$ of reaction temperature and 10 minutes of reaction time. The compositional variations of this combined aqueous ammonia-dilute sulfuric acid treatment resulted in 68.0 % of cellulose recovery and 95.7 % of hemicellulose, 81.3 % of lignin, 89.1 % of ash removal respectively. The enzymatic digestibility of 90.5 % was recorded in the combined pretreated Miscanthus sample and it was 14.7 times higher than the untreated sample. The ethanol yield in the Simultaneous Saccharification and Fermentation was 90.4 % of maximum theoretical yield based on cellulose content of the combined pretreated sample and it was about 98 % compared to the ${\alpha}$-cellulose ethanol yield.

  • PDF

Enzymatic Hydrolysis of Cellulose (섬유소(纖維素)의 당화(糖化))

  • Lee, Kye-Joon
    • Korean Journal of Pharmacognosy
    • /
    • v.7 no.2
    • /
    • pp.85-93
    • /
    • 1976
  • Since cellulose is the only organic material that is annually replenishable in very large quantities, we must explore ways to utilize it as a source of energy, food and chemicals. For the utilization of this resource, it is first enzymatic hydrolyzed to glucose, then the glucose can be used as a food, converted single cell protein by microorganism, fermented to clean burning fuel and other chemicals. Cellulolytic enzyme, cellulase, consists of two or three major components, $C_1-cellulase$, $C_x-cellulase$ and ${\beta}-glucosidase$. $C_x-cellulase$ are fairly common but $C_1-cellulase$ are quite rare. Trichoderma viride is the best source of active cellulose, especially $C_1-enzyme$. Saccharification rate of cellulose in greatly influenced by the degree of crystallinity and extent of lignification. But by the pretreatment the substrate with cellulose swelling agent, delignifying reagent and physical treatment, the degree of saccharification is enhanced. Thus, glucose syrups of 2 to 10% concentration are realized from milled newspaper. The enzymatic hydrolysis of such energy rich material, such as cellulose, to glucose is technically feasible and practically achievable on a very large scale.

  • PDF

Characterization of enzymatic activity of galactose epimerase-less mutant of Salmonella pullorum (Galactose epimerase결손 Salmonella pullorum 변이주의 효소활성)

  • Kim, Jong-bae
    • Korean Journal of Veterinary Research
    • /
    • v.34 no.4
    • /
    • pp.781-785
    • /
    • 1994
  • Uridine diphosphate(UDP)-galactose-4-epimerase-less mutants of Salmonella pullorum were isolated after mutagenic treatment with ethidium bromide. When isolated gal E mutants of S. pullorum A2 and D1 were grown in the presence of galactose(0.1 W/V), they exhibited marked bacteriolysis in heart infusion broth. The mutant strains were further investigated the characteristics of enzymatic activities in the Leoloir galactose pathway. Isolated A2 and D1 strains were completely deficient in UDP-galactose-4-epimerase activity. And the activity of other enzymes involved in galactose metabolism were reduced significantly.

  • PDF