• Title/Summary/Keyword: enzymatic esterification

Search Result 17, Processing Time 0.033 seconds

Optimizing the Synthesis of Citronellyl Valerate Using Lipase from Rhizopus sp

  • De Melo, Lauro Luis M. M.;Pastore, Gbiucia M.;Macedo, Gabriela A.
    • Food Science and Biotechnology
    • /
    • v.14 no.3
    • /
    • pp.368-370
    • /
    • 2005
  • Citronellyl valerate was synthesized by a lipase from a Rhizopus sp strain isolated and the lipase produced, at UNICAMP, Brazil. Direct esterification was performed in a solvent-free medium to produce the flavor ester. Response surface methodology was used to optimize the process with respect to the substrate molar ratio and lipase concentration. The results show that the synthesis of citronellyl valerate can be carried out in a solvent-free medium, the maximum ester conversion rate achieved being 91.5% after 48 hours of reaction time.

Lipase-catalyzed Production of Solid Fat Containing Conjugated Linoleic Acid in Binary Models

  • Zhu, Xue-Mei;Alim, Abdul;Hu, Jiang-Ning;Adhikari, Prakash;Lee, Jeung-Hee;Lee, Ki-Teak
    • Food Science and Biotechnology
    • /
    • v.18 no.3
    • /
    • pp.803-807
    • /
    • 2009
  • Solid fats were esterified with solid phase of rice bran oil (S-RBO), palm stearin (PS), and conjugated linoleic acid (CLA) at 2 substrate mole ratios (S-RBO:PS:CLA of 1:1:2 and 1:3:4). The major fatty acids were palmitic, oleic, and CLA in 36 hr products. The solid fat content (SFC) of the 1:1:2 product was 12.8% while the SFC of 1:3:4 product was 45.1% at $20^{\circ}C$. The SFCs after $20^{\circ}C$ reduced when the reaction time increased from 1 to 36 hr, suggesting that the change of triacylglycerol species was augmented by extending reaction time.

Synthesis of Functional Lipid from Glyceryl Monooleate and Conjugated Linoleic Acid by Enzymatic Reaction (Glyceryl Monooleate와 Conjugated Linoleic Acid로부터 효소적 반응을 이용한 기능성 유지 합성)

  • Jeon, Mi-Sun;Lee, Ki-Teak
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.8
    • /
    • pp.1062-1068
    • /
    • 2009
  • Diacylglycerol (DAG) were synthesized by enzymatic esterification of glyceryl monooleate (GMO) and conjugated linoleic acid (CLA) in a shaking water bath. The reaction was catalyzed by Lipozyme TLIM (immobilized lipase from Thermomyces lanuginosa). Effects of reaction time, molar ratio, enzyme road and molecular sieves were studied. Results of normal-phase high performance liquid chromatography (NP-HPLC) analysis were performed. At 1:1, 2:1 and 3:1 (GMO : CLA) molar ratio and Lipozyme TLIM of 20% amount, DAG were produced in 42.6, 54.4 and 54.6 area% in 1 hr, respectively. When different Lipozyme TLIM amounts (2, 5, 10, 20%) were used with 2:1 (GMO : CLA) molar ratio, DAG were produced 21.4 (24 hr), 51.7 (12 hr), 56.2 (6 hr) and 54.4 (1 hr) area%, respectively. The reaction in the absence of molecular sieves increased DAG contents. The maximum DAG concentration conditions were obtained with molar ratio of 2:1 (GMO : CLA), lipase concentration of 10% (of substrate), 10% molecular sieves and reaction time of 6 hours at 55$^{\circ}C$. Under this reaction condition, produced DAG-rich oil was composed of 69 area% DAG, 7.9 area% TAG, 2 area% FFA, and 21.1 area% MAG.

Lipase-Catalyzed Reactions for Fats and Oils in Non-Polar Solvent (유기용매 내에서의 유지의 리파제 촉매반응)

  • Daeseok Han;Kwon, Dae-Young;Rhee, Joon-Shick
    • Microbiology and Biotechnology Letters
    • /
    • v.16 no.3
    • /
    • pp.250-258
    • /
    • 1988
  • Lipases are well known as the enzymes which catalyze the hydrolysis of ester bonds combining aliphatic chains and glycerol on mono-, di- and triglycerides. Their reactions are characterized by be-ing heterogeneous and catalyzing the water-insoluble substrates. This property has been one of the Hurdles which delayed the application of lipases in fats and oils industry, However, with the development of biological reaction system of which organic solvent is introduced in part or whole as the reaction media, enzymatic manipulation of fats and oils is attracting increasing attention from the academic and industrial sectors. Trials in two-phase system and reversed micellar system to produce fatty acids through enzymatic hydrolysis of triglycerides preyed to be efficient in respect to volumetric productivity, fat hydrolysis rate, product separation, etc. In organic solvent system lipases have been found to have the ability to catalyze aminolysis, transesterification, esterification, thiotransesterification and oximolysis that are virtually impossible to catalyze in water. The organic solvent system is being extensively used in interesterifying glycerides to produce a fat with the modified physical and chemical nature.

  • PDF

Enzymatic Synthesis of Diacylglycerol Oil from Glyceryl Mono-oleate and Conjugated Linoleic Acid Using a Stirred-Batch Type Reactor (회분식 반응기를 이용한 Glyceryl Monooleate와 Conjugated Linoleic Acid로부터 효소적 반응을 통한 디글리세롤 유지의 합성)

  • Jeon, Mi-Sun;Lee, Ki-Teak
    • Food Science and Preservation
    • /
    • v.16 no.2
    • /
    • pp.246-252
    • /
    • 2009
  • Diacylglycerol(DAG) was produced by enzymatic esterification of glyceryl mono-oleate(GMO) and conjugated linoleic acid(CLA) in a stirred-batch type reactor. The reaction was catalyzed by lipozyme RMIM(an immobilized lipase from Rizomucor miehei). DAG was isolated by a short-path distillation process and decolorized. DAG oil was composed of 87.3% DAG, 11.4% triacylglycerol(TAG), and 1.5% monoacylglycerol(MAG)(all w/w). Major fatty acids in DAG oil were oleic acid(54%), CLA(31.1%), and linoleic acid(7%). DAG oil iodine,and acid values were 108.8, 2.57, and 1, respectively. The DAG oil solid fat index(SFI) and thermograms were obtained using differential scanning calorimetry.

Antifungal Effect of Triglycerol Monolaurate Synthesized by Lipozyme 435-Mediated Esterification

  • Zhang, Song;Xiong, Jian;Lou, Wenyong;Ning, Zhengxiang;Zhang, Denghui;Yang, Jiguo
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.4
    • /
    • pp.561-570
    • /
    • 2020
  • This study was designed to synthesize triglycerol monolaurate (TGML) with Lipozyme 435 as the catalyst, and explore its effects on the growth of Aspergillus parasiticus (A. parasiticus) and Aspergillus flavus (A. flavus) and the secretion of aflatoxin b1. The highest content of TGML (49.76%) was obtained at a molar ratio of triglycerol to lauric acid of 1.08, a reaction temperature of 84.93℃, a reaction time of 6 h and an enzyme dosage of 1.32%. After purification by molecular distillation combined with the washes with ethyl acetate and water, the purity of TGML reached 98.3%. Through characterization by electrospray-ionization mass spectrometry, infrared spectrum and nuclear magnetic resonance, the structure of TGML was identified as a linear triglycerol combined with lauroyl at the end. Finally, the inhibitory effects of TGML on the growths of A. parasiticus and A. flavus and the secretion of aflatoxin b1 were evaluated by measuring the colony diameter, the inhibition rate of mycelial growth and the content of mycotoxin in the media. The results indicated that TGML had a stronger inhibitory effects on colony growth and mycelial development of both toxic molds compared to sodium benzoate and potassium sorbate, and the secretions of toxins from A. parasiticus and A. flavus were completely suppressed when adding TGML at 10 and 5 mM, respectively. Based on the above results, TGML may be used as a substitute for traditional antifungal agents in the food industry.

Enzymatic synthesis of structured lipids containing conjugated linolenic acids extracted from pomegranate seed oil and their physicochemical characteristics (석류 종자유로부터 얻어진 Conjugated Linolenic Acid를 함유한 기능성 고체지의 효소적 합성 및 이화학적 특성 연구)

  • Lee, Koo;Shin, Jung-Ah;Lee, Ki-Teak
    • Korean Journal of Agricultural Science
    • /
    • v.39 no.3
    • /
    • pp.395-405
    • /
    • 2012
  • Lipozyme TL IM-catalyzed esterification was carried out to produce functional hard fat (structured lipid, SL) using palm stearin (PS) and hydrolysate of pomegranate seed oil (HPSO) of 1:6 molar ratio. HPSO contained conjugated linolenic acid (CLnA, about 80%). The reaction was performed at non-solvent system and solvent (n-hexane) system using Lipozyme TL IM (10% of total substrates, w/w) for 12, 24, and 72 hr in a shaking water bath ($55^{\circ}C$ and 185 rpm), respectively. SL synthesized in non-solvent system (NH-SL) and SL synthesized in n-hexane system (H-SL) were refined after deacidification, respectively. Their physicochemical properties were compared to obtain desirable functional hard fat. The content of CLnA in NH-SL increased from 34.38% to 40.63% with increasing reaction time. Similar results also observed in H-SL resulting in 36.81~45.83% of CLnA. In triacylglycerol (TAG) composition, the main molecules of LnLnLn (Ln=linolenic acid, PN=36) and the LnLnP (P=palmitic acid, PN=40) were newly synthesized in NH-SL and H-SL with increasing reaction time. After 72 hr reaction, iodine values of NH-SL (136.49) and H-SL (140.37) showed high values because of the high content of CLnA. Solid fat index (SFI) in NH-SL was higher than that in H-SL at each measured temperature. The predominant polymorphic forms of NH-SL and H-SL obtained after esterification for 72 hr were the desirable crystalline structure of the ${\beta}$' form.