• 제목/요약/키워드: enzymatic and non-enzymatic

검색결과 278건 처리시간 0.027초

가열온도에 따른 수삼의 갈변반응 특성 (Browning Reaction of Fresh Ginseng (Panax ginseng C.A. Meyer) as Affected by Heating Temperature)

  • 이종원;이성계
    • Journal of Ginseng Research
    • /
    • 제19권3호
    • /
    • pp.249-253
    • /
    • 1995
  • In the browning reaction of Korean ginseng, it appears that enzymatic and non-enzymatic browning reaction occurred in the initial stage of heating fresh ginseng at low temperature, and then non-enzymatic browning reaction followed in the drying period after heating. Activation energy of the browning reaction for red ginseng was about 9.0 kcal/mol. Browning reaction of red ginseng was accede- rated with an increase in steaming time, and a great extent of browning reaction occurred between 60-90 min of steaming at 10$0^{\circ}C$. Browning pigments of red ginseng were mostly water soluble subset.

  • PDF

MOF-based Sensing Materials for Non-enzymatic Glucose Sensors

  • Jingjing Liu;Xiaoting Zha;Yajie Yang
    • Journal of Electrochemical Science and Technology
    • /
    • 제15권1호
    • /
    • pp.32-50
    • /
    • 2024
  • Diabetes mellitus is one of the common chronic diseases, seriously threating to human health. The continuous monitoring of blood glucose concentration can effectively prevent diabetic diseases. The sensing performance of glucose non-enzymatic sensors is mainly determined by working electrode materials. Metal-organic frameworks (MOFs) are recognized as promising candidate for glucose sensor application, due to its large surface areas, ordered porous structure and nearly infinite designability. In this review, the sensing performance, research progress and future challenge of non-enzymatic glucose sensors based on MOF-based materials in recent years are presented. We hope that this review would provide valuable technology guidance for high performance non-enzymatic glucose sensors based on MOFs.

도시 폐기물로부터 알코올 생산 (II) - 물리적, 화학적 전처리된 폐지의 효소가수분해 조건 검토 - (The Production of Alcohol from Municipal Waste(II) - The Effects of Physical or Chemical Treatment on the Enzymatic Hydrolysis of Waste Paper -)

  • 임부국;양재경;이종윤
    • Journal of the Korean Wood Science and Technology
    • /
    • 제25권1호
    • /
    • pp.65-70
    • /
    • 1997
  • The effects on the enzymatic hydrolysis of waste paper treated with physical or chemical treatment were investigated. To gain the higher saccharification rate, physical or chemical treatment are necessary in enzymatic conversion process of waste paper. The major deterrents to the effective utilization of waste paper for enzymatic conversion process are phenolic compounds, cellulose crystallinity and coating materials. In the enzymatic hydrolysis of waste paper, the deterrents through enzymatic conversion process can be eliminated by the physical or chemical treatment. This study was performed to obtain the optimal condition for enzymatic conversion process of non-treated waste paper and to review effects on enzymatic conversion process of waste paper treated with physical or chemical methods. In the aspect of saccharification rate, waste paper treated with 1.5% sodium hypochlorite was the most effective and in physical treatment methods, multi-stage treatment(autohydrolysis+refining treatment) was more effective than the other physical treatment.

  • PDF

표면 개질을 통한 미생물합성 폴리에스테르의 효소분해속도 조절 (Control of Enzymatic Degradability of Microbial Polyester by Surface Modification)

  • 이원기
    • 한국환경과학회지
    • /
    • 제11권12호
    • /
    • pp.1315-1320
    • /
    • 2002
  • Since the enzymatic degradation of microbial poly[(R)-3-hydroxybutyrate-co-3-hydroxyvalerate] (P(3HB-co-3HV)) initially occurs by a surface erosion process, a degradation behavior could be controlled by the change of surface property. In order to control the rate of enzymatic degradation, plasma gas discharge and blending techniques were used to modify the surface of microbial P(3HB-co-3HV). The surface hydrophobic property of P(3HB-co-3HV) film was introduced by CF$_3$H plasma exposure. Also, the addition of small amount of polystyrene as a non-degradable polymer with lower surface energy to P(3HB-co-3HV) has been studied. The enzymatic degradation was carried out at 37 $^{\circ}C$ in 0.1 M potassium phosphate buffer (pH 7.4) in the presence of an extracellular PHB depolymerase purified from Alcaligenes facalis T1. Both results showed the significant retardation of enzymatic erosion due to the hydrophobicity and the enzyme inactivity of the fluorinated- and PS-enriched surface layers.

Antioxidant Activity of Aqueous Extract of Coscinium fenestratum in STZ-Nicotinamide Induced Diabetic Rats

  • Punitha, I.S.R.;Bhat, Nalini;Rajendran, K.;Shirwaikar, Arun;Shirwaikar, Annie
    • Natural Product Sciences
    • /
    • 제11권3호
    • /
    • pp.155-159
    • /
    • 2005
  • The aqueous extract of Coscinium fenestratum was studied for its antioxidant status in STZ-nicotinamide induced type 2 diabetic rats at two dose levels of 250 mg/kg and 500 mg/kg. At the end of the experimental period, diabetic rats treated with aqueous extract at both dose levels showed a significant increase in the levels of enzymatic antioxidants such as glutathione peroxidase, glutathione synthetase, peroxidase, superoxide dismutase and catalase as compared to the untreated control. Similarly, a significant increase was also observed in the levels of the non enzymatic antioxidants ceruloplasmin, ascorbic acid and tocopherol. The results suggest that the aqueous stem extract of C. fenestratum prevents type 2 diabetes mellitus induced oxidative stress.

비 분해성고분자와 블렌드를 이용한 생분해성 폴리유산의 효소분해속도 조절 (Control of Enzymatic Degradability of Biodegradable Polylactide by Blending with Non-degradable Polymers)

  • 장성호;박상보;이원기
    • 한국환경과학회지
    • /
    • 제19권9호
    • /
    • pp.1161-1167
    • /
    • 2010
  • The effects of addition of non degradable polymers, polystyrene (PS) and poly(methyl methacrylate) (PMMA) on the rate of enzymatic degradation of biodegradable poly(l-lactide) (PLLA) have been studied in term of surface structure. Since a component in multicomponent polymeric system has shown surface enrichment, PS and PMMA which have lower surface energy than PLLA were selected as a minor blend component (5 wt%). Enzymatic degradation was carried out at $37^{\circ}C$ and pH 8.5 in the aqueous solution of Proteinase K. Two blend systems, partially miscible (PS/PLLA) and immiscible (PMMA/PLLA), showed the surface enrichment of 4 and 2 times of PS and PMMA, respectively. From the weight loss profile data, the slow degradation rate of both blend films was observed. This indicates that PS or PMMA domains which exist at surface act as a retardant of enzymatic attack.

Electrochemical Non-Enzymatic Glucose Sensor based on Hexagonal Boron Nitride with Metal-Organic Framework Composite

  • Ranganethan, Suresh;Lee, Sang-Mae;Lee, Jaewon;Chang, Seung-Cheol
    • 센서학회지
    • /
    • 제26권6호
    • /
    • pp.379-385
    • /
    • 2017
  • In this study, an amperometric non-enzymatic glucose sensor was developed on the surface of a glassy carbon electrode by simply drop-casting the synthesized homogeneous suspension of hexagonal boron nitride (h-BN) nanosheets with a copper metal-organic framework (Cu-MOF) composite. Comprehensive analytical methods, including field-emission scanning electron microscopy (FE-SEM), Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), cyclic voltammetry, electrochemical impedance spectroscopy, and amperometry, were used to investigate the surface and electrochemical characteristics of the h-BN-Cu-MOF composite. The FE-SEM, FT-IR, and XRD results showed that the h-BN-Cu-MOF composite was formed successfully and exhibited a good porous structure. The electrochemical results showed a sensor sensitivity of $18.1{\mu}A{\mu}M^{-1}cm^{-2}$ with a dynamic linearity range of $10-900{\mu}M$ glucose and a detection limit of $5.5{\mu}M$ glucose with a rapid turnaround time (less than 2 min). Additionally, the developed sensor exhibited satisfactory anti-interference ability against dopamine, ascorbic acid, uric acid, urea, and nitrate, and thus, can be applied to the design and development of non-enzymatic glucose sensors.

두릅나무 부탄올 추출물이 지질 과산화에 미치는 영향 (Effects of Butanol Extract of Aralia elata on Lipid Peroxidation)

  • 서보권;정연봉;김용규;신옥진;이종철
    • 약학회지
    • /
    • 제37권3호
    • /
    • pp.270-277
    • /
    • 1993
  • It is well known that lipidperoxide, formed in vivo, induced the denaturation of enzyme and destruction of cell membrane to acute injury of tissue. Aralia elata have physiological activates, the improvement of lipid metabolism, antidiabetic activity etc., which was thought to have the relationship to lipid peroxidation. The anti-lipidperoxidative effect of Aralia elata have not yet established. In this study, we examined the anti-lipidperoxidative effects of Aralia elata (Butanol fraction) on CCI$_{4}$ induced lipidperoxidation in rats, and elucidated the anti-lipidperoxidative mechanism. In rat liver homogenate intoxicated with CCI$_{4}$ (0.5 ml/100g), BuOH fraction of Aralia elata (80 mg/Kg/day) exhibited 85.41% anti-lipidperoxidative effect but in serum 69.63% inhibitory effects, respectively. In mitochondrial and microsomal fraction showed inhibition of 55.85% and 69.30%, respectively. In order to elucidate the mechanism of anti-lipidperoxidation effects of Aralia elata, enzymatic (NADPH dependent) and non-enzymatic (Ascorbic acid catalyzed) reaction, in vitro, were performed. In enzymatic reation, Aralia elata exhibited 59.43% anti-lipidperoxidation effects, but in non-enzymatic reaction exhibited 43.27% inhibition. Therefore, it is noteworthy that antioxidative power of them may mainly results from the inhibition by enzymatic reaction.

  • PDF

효소 종류에 따른 참죽 추출물의 산화방지 효과 (Antioxidant Activities of Cedrela sinensis Hydrolysates Prepared Using Various Enzymes)

  • 오민희;장혜림;임예진;윤경영
    • 한국식품과학회지
    • /
    • 제47권4호
    • /
    • pp.413-418
    • /
    • 2015
  • 본 연구에서는 기능성이 높은 참죽을 효소를 이용하여 추출하고 각 효소에 따른 추출물의 기능성 성분의 함량 및 산화방지 활성을 측정하였다. Viscozyme 추출물이 가장 높은 수율을 보였으며, AMG 효소 추출물을 제외한 효소 처리군이 효소 비처리군에 비해 유의적으로 높은 polyphenol 및 flavonoid 함량을 나타내었다. DPPH 라디칼 소거능은 Viscozyme 추출물이 가장 높았으며, 그 다음 AMG, Shearzyme, Celluclast 추출물의 순으로 높았다. ABTS 라디칼 소거능은 추출물을 희석했음에도 불구하고 모든 처리군에서 90% 이상의 높은 활성을 보였다. $Fe^{2+}$ 킬레이트 효과는 Viscozyme 추출물이 가장 높은 활성을 보였으며, 그 다음 Shearzyme, Celluclast, 비효소, AMG 추출물 순으로 나타났다. 환원력은 Shearzyme과 Viscozyme 추출물이 가장 높았으며, 그 다음으로 비효소, AMG, Celluclast 추출물 순으로 나타났다. 이상의 결과에서 효소를 이용하여 참죽을 추출할 경우 효소를 처리하지 않는 경우에 비해 높은 산화방지 활성을 나타내었으며, 특히, Viscozyme 처리 시 가장 높은 수율과 산화방지 활성을 나타내어 참죽의 기능성 식품 소재화를 위해 기능성 성분 추출 시 효소의 이용을 기대할 수 있을 것으로 판단된다.

ITO 전극 위에 고정된 니켈 나노 입자를 이용한 무효소 혈당센서에 관한 전기화학적인 연구 (The Electrochemical Studies of Non-enzymatic Glucose Sensor on the Nickel Nanoparticle-deposited ITO Electrode)

  • 오인돈;김사만다;최영봉
    • 전기화학회지
    • /
    • 제17권3호
    • /
    • pp.164-171
    • /
    • 2014
  • 무효소 혈당센서는 높은 선택성과 민감성을 가지고 저비용으로 체내 혈당(glucose)을 검출할 수차세대 기술이다. 현재 시판되고 있는 혈당센서는 당을 산화시켜주는 당산화효소와 전극과 효소사이에 전자 전달을 원활하게 해주는 산화/환원 매개체를 이용하여 효소센서로 제작된다. 그러나 이러한 효소센서는 pH, 온도, 습도, 화학적 독성물질 등에 영향을 많이 받아 안정성이 떨어지고, 제작에 비용이 많이 드는 단점을 가지고 있다. 본 논문은 위와 같은 단점을 해결하고자 환원제인 당에 의하여 환원되는 니켈 나노입자를 전기화학적 흡착방법을 이용하여 산화 인듐 주석 전극 (ITO)에 고정시켰다. 고정된 니켈 나노입자는 전극의 표면적을 넓혀 신호를 증폭시키는 효과를 가지고 있으며, 당에 의하여 계속적으로 니켈이 환원됨에 따라 전극 반응에서는 촉매산화전류 반응으로 나타낸다. 당의 농도에 따라서 선형적으로 감응 할 수 있는 최적 조건의 니켈 나노입자를 이용하여 혈당센서를 제작하였다. 또한 체내에 존재하는 방해 인자인 아스코브산의 간섭을 억제하기 위해 음이온 고분자의 표면처리를 통하여 상대적으로 당에 선택적으로 감응하도록 하였다. 제작된 전극을 통하여 당 농도 별 산화 촉매 전류를 순환 전압 전류 법으로 측정한 결과 650 mV (vs. Ag/AgCl)에서 최대 전기적 신호가 발생되었으며, 포도당 0~6.15 mM 의 농도범위에서 전기적 신호가 선형 증가함을 확인할 수 있었다.