• 제목/요약/키워드: enzymatic activity assay

검색결과 145건 처리시간 0.025초

수지상세포의 항원제시 능력 및 항암활성에 미치는 Lipofectin의 영향 (Effect of Lipofectin on Antigen-presenting Function and Anti-tumor Activity of Dendritic Cells)

  • 노영욱;임종석
    • IMMUNE NETWORK
    • /
    • 제6권2호
    • /
    • pp.102-110
    • /
    • 2006
  • Background: Dendritic cells (DC) are professional antigen-presenting cells in the immune system and can induce T cell response against virus infections, microbial pathogens, and tumors. Therefore, immunization using DC loaded with tumor-associated antigens (TAAs) is a powerful method of inducing anti-tumor immunity. For induction of effective anti-tumor immunity, antigens should be efficiently introduced into DC and presented on MHC class I molecules at high levels to activate antigen-specific $CD8^+$ T cells. We have been exploring methods for loading exogenous antigens into APC with high efficiency of Ag presentation. In this study, we tested the effect of the cationic liposome (Lipofectin) for transferring and loading exogenous model antigen (OVA protein) into BM-DC. Methods: Bone marrow-derived DC (EM-DC) were incubated with OVA-Lipofectin complexes and then co-cultured with B3Z cells. B3Z activation, which is expressed as the amount of ${\beta}$-galactosidase induced by TCR stimulation, was determined by an enzymatic assay using ${\beta}$-gal assay system. C57BL/6 mice were immunized with OVA-pulsed DC to monitor the in vivo vaccination effect. After vaccination, mice were inoculated with EG7-OVA tumor cells. Results: BM-DC pulsed with OVA-Lipofectin complexes showed more efficient presentation of OVA-peptide on MHC class I molecules than soluble OVA-pulsed DC. OVA-Lipofectin complexes-pulsed DC pretreated with an inhibitor of MHC class I-mediated antigen presentation, brefeldin A, showed reduced ability in presenting OVA peptide on their surface MHC class I molecules. Finally, immunization of OVA-Lipofectin complexes-pulsed DC protected mice against subsequent tumor challenge. Conclusion: Our data provide evidence that antigen-loading into DC using Lipofectin can promote MHC class I- restricted antigen presentation. Therefore, antigen-loading into DC using Lipofectin can be one of several useful tools for achieving efficient induction of antigen-specific immunity in DC-based immunotherapy.

Measurement of Human Cytochrome P450 Enzyme Induction Based on Mesalazine and Mosapride Citrate Treatments Using a Luminescent Assay

  • Kim, Young-Hoon;Bae, Young-Ji;Kim, Hyung Soo;Cha, Hey-Jin;Yun, Jae-Suk;Shin, Ji-Soon;Seong, Won-Keun;Lee, Yong-Moon;Han, Kyoung-Moon
    • Biomolecules & Therapeutics
    • /
    • 제23권5호
    • /
    • pp.486-492
    • /
    • 2015
  • Drug metabolism mostly occurs in the liver. Cytochrome P450 (CYP) is a drug-metabolizing enzyme that is responsible for many important drug metabolism reactions. Recently, the US FDA and EU EMA have suggested that CYP enzyme induction can be measured by both enzymatic activity and mRNA expression. However, these experiments are time-consuming and their interassay variability can lead to misinterpretations of the results. To resolve these problems and establish a more powerful method to measure CYP induction, we determined CYP induction by using luminescent assay. Luminescent CYP assays link CYP enzyme activity to firefly luciferase luminescence technology. In this study, we measured the induction of CYP isozymes (1A2, 2B6, 2C9, and 3A4) in cryopreserved human hepatocytes (HMC424, 478, and 493) using a luminometer. We then examined the potential induction abilities (unknown so far) of mesalazine, a drug for colitis, and mosapride citrate, which is used as an antispasmodic drug. The results showed that mesalazine promotes CYP2B6 and 3A4 activities, while mosapride citrate promotes CYP1A2, 2B6, and 3A4 activities. Luminescent CYP assays offer rapid and safe advantages over LC-MS/MS and qRT-PCR methods. Furthermore, luminescent CYP assays decrease the interference between the optical properties of the test compound and the CYP substrates. Therefore, luminescent CYP assays are less labor intensive, rapid, and can be used as robust tools for high-throughput CYP screening during early drug discovery.

인간 신장암 Caki세포에서 dicumarol에 의한 PMA 매개 matrix metalloproteinase-9의 발현 억제 효과 (Dicumarol Inhibits PMA-Induced MMP-9 Expression through NQO1-independent manner in Human Renal Carcinoma Caki Cells)

  • 박은정;권택규
    • 생명과학회지
    • /
    • 제26권2호
    • /
    • pp.174-180
    • /
    • 2016
  • Dicumarol는 전동싸리 식물에서 추출한 coumarin 유도체로 vitamin K 의존적으로 항응고 작용를 한다. 그러나, dicumarol에 의한 MMP-9의 발현 및 활성화 조절에 대한 연구는 수행되지 않았다. 본 연구에서 dicumarol이 인간 신장암 Caki세포에서 PMA 매개의 MMP-9의 발현과 활성화를 조절 할 수 있는지 확인하였다. Dicumarol는 PMA유도 MMP-9의 활성을 억제하였고, MMP-9의 mRNA RT-PCR 및 promoter assay를 통하여 전사단계에서 조절됨을 확인하였다. Dicumarol에 의한 MMP-9 발현 조절에 NF-κB와 AP1 전사인자의 전사 활성 저해에 의하여 야기됨을 확인하였다. NQO1 siRNA를 이용한 knock-down 실험에서 dicumarol이 PMA유도의 MMP-9 활성 억제에 NQO1의 관련성을 확인 할 수 없었다. Dicumarol는 PMA에 의한 세포이동 및 침윤을 억제하였는데, 이러한 현상은 MMP-9의 발현 및 활성을 조절함으로써 일어날 수 있음을 확인하였다.

개불 라이소자임 유래 항균성 모델 펩타이드(Uu-ilys-CF)의 재조합 단백질 생산 및 항균 활성 (Recombinant Production and Antimicrobial Activity of an Antimicrobial Model Peptide (Uu-ilys-CF) Derived from Spoon Worm Lysozyme, Uu-ilys)

  • 오혜영;고혜진;박남규
    • 생명과학회지
    • /
    • 제31권1호
    • /
    • pp.83-89
    • /
    • 2021
  • 개불 라이소자임(Uu-ilys)은 개불(Urechis unicinctus)로부터 정제된 무척추형 라이소자임으로 병원균에 대한 방어에 주요하게 작용하는 선천성 면역 물질이며, 비효소적 항균 활성을 가지고 있어 항균 활성을 지닌 유도체의 개발 가능성을 가지고 있다. 본 논문은 개불 라이소자임에서 유래된 항균 활성을 가지는 유도체의 디자인과 생산을 기술하고 있다. 여러 항균성 펩타이드(antimicrobial peptide, AMP) 데이터베이스에서 제공하는 항균성 펩타이드 예측 도구를 사용하여 개불 라이소자임에서 항균 활성을 가지는 부위를 예측하였다. 개불 라이소자임 C-말단의 절편이 항균 활성을 나타낼 것으로 예측되었으며, 이 펩타이드는 C-말단 절편, Uu-ilys-CF라 명명하였다. Uu-ilys-CF은 이형 발현 시스템인 TrxA-Uu-ilys-CF 퓨전 단백질을 사용하여 생산하였다. 만들어진 퓨전 단백질은 브롬화시안을 사용하여 메티오닌 잔기를 절단하였으며, 절단된 Uu-ilys-CF은 고성능액체크로마토그래피와 역상 컬럼인 CapCell-Pak C18을 사용하여 분리되었다. Uu-ilys-CF의 항균 활성을 조사하기 위해서 여러 균주(그람양성균 4개, 그람음성균7개, 진균 1개)를 사용하였다. Uu-ilys-CF의 항균 활성은 살모넬라에서 가장 높은 반응을 보였다. 비록 Uu-ilys-CF는 진균에 활성을 나타내지 않았지만, 사용한 균주들에서 넓은 범위의 항균 활성을 나타내었다.

당뇨 처방에 근거한 생약재의 α-Glucosidase 활성 저해 효과 및 이를 활용한 미백 소재 평가법 (Effect of Medicinal Herb Prepared through Traditional Antidiabetic Prescription on α-Glucosidase Activity and Evaluation Method for Anti-Melanogenesis Agents Using α-Glucosidase Activity)

  • 김미진;임경란;윤경섭
    • 한국식품영양과학회지
    • /
    • 제44권7호
    • /
    • pp.993-999
    • /
    • 2015
  • 본 연구에서는 선정한 생약재 및 복합처방단의 ${\alpha}$-glucosidase 저해 활성을 알아보았으며, 이 방법이 미백 소재 스크리닝을 위한 유용한 평가법인지를 알아보았다. 한의학과 민간에서 당뇨의 개선 및 치료 효과가 우수하다고 알려진 생약재 및 처방 중 죽력, 귀전우, 적양, 연자육, 마인, 청심연자음의 ${\alpha}$-glucosidase 활성 저해 효과는 식후 혈당조절제인 acarbose와 비교하여 볼 때 우수한 효과를 나타내었다. 미백 효과가 알려진 연자육을 함유한 청심연자음 hydrolyzed EtOAc layer는 $100{\mu}g/mL$ 농도에서 약 50% 멜라닌 생성 저해 효과를 보였다. 또한 청심연자음 hydrolyzed EtOAc layer는 ${\alpha}$-glucosidase 활성 저해 효과가 우수하였으나 mushroom tyrosinase 활성 저해 효과는 나타나지 않았다. 이로써 청심연자음 hydrolyzed EtOAc layer는 ${\alpha}$-glucosidase 활성을 저해시켜 tyrosinase의 glycosylation을 저해함으로써 멜라닌 생성 억제 효과가 나타나는 것으로 생각된다. 이상의 결과로 볼 때 ${\alpha}$-glucosidase 활성 억제 효과가 있으면서 당뇨병에 효과가 있는 생약재들은 N-linked glycoprotein인 tyrosinase의 glycosylation을 저해하여 tyrosinase의 세포 내 이동이나 활성을 억제함으로써 멜라닌 생성을 억제할 것으로 사료되며, 본 연구에서 선정된 생약재들은 당뇨병 치료를 위한 목적뿐만 아니라 화장품에서 새로운 미백 소재로서의 활용가치가 있을 것으로 판단된다. 또한 미백에 효과가 있는 소재 스크리닝을 위해 현재 널리 사용되고 있는 mushroom tyrosinase 활성 저해 효과와 다른 접근 방법으로써 ${\alpha}$-glucosidase 활성 측정 방법도 하나의 평가법으로 유용할 것으로 생각된다.

Development and Characterization of Hyperglycosylated Recombinant Human Erythropoietin (HGEPO)

  • JarGal, Naidansuren;Min, Kwan-Sik
    • Reproductive and Developmental Biology
    • /
    • 제33권2호
    • /
    • pp.77-83
    • /
    • 2009
  • Erythropoietin (EPO), a glycoprotein hormone produced from primarily cells of the peritubular capillary endothelium of the kidney, is responsible for the regulation of red blood cell production. We have been investigating the roles of glycosylation site added in the biosynthesis and function of recombinant protein. We constructed three EPO mutants ($\Delta$69, $\Delta$105 and $\Delta$69,105), containing an additional oligosaccharide chains. EPOWT and EPO$\Delta$69 were effectively expressed in transient and stably transfected CHO-K1 cell lines. But, it wasn't detected any protein in the culture medium of EPO$\Delta$105 and EPO$\Delta$69,105 mutants. The growth and differentiation of EPO-dependent human leukemic cell line (F36E) were used to measure the cytokine dependency and in vitro bioactivity of rec-hEPO. MTT assay values were increased by survival of F36E cells at 24h. To analysis biological activity in vivo, two groups of ICR-mice (7 weeks old) were injected subcutaneously with 10 IU per mice of rec-hEPO molecules on days 0 and 2. Red blood cell and hematocrit values were measured on 6 days after the first injection. The hematocrit values were remarkably increased in all treatment groups. The pharmacokinetic analysis was also affected in the mice injected with rec-hEPO molecules 2.5 IU by tail intravenous. Protein samples were detected by Western blotting. An EPO$\Delta$69 protein migrated as a broad band with an average apparent molecular and detected slightly high band. Enzymatic N-deglycosylation resulted in narrow band and was the same molecular size. The biological activity of EPO$\Delta$69 was enhanced to compare with wt-hEPO. The half-life was longer than wt-hEPO. The results suggest that hyperglycosyalted recombinant human erythropoietin (EPO$\Delta$69) may have important biological and therapeutic good points.

S-benzyl-cysteine-mediated Cell Cycle Arrest and Apoptosis Involving Activation of Mitochondrial-dependent Caspase Cascade through the p53 Pathway in Human Gastric Cancer SGC-7901 Cells

  • Sun, Hua-Jun;Meng, Lin-Yi;Shen, Yang;Zhu, Yi-Zhun;Liu, Hong-Rui
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권11호
    • /
    • pp.6379-6384
    • /
    • 2013
  • S-benzyl-cysteine (SBC) is a structural analog of S-allylcysteine (SAC), which is one of the major water-soluble compounds in aged garlic extract. In this study, anticancer activities and the underlying mechanisms of SBC action were investigated and compared these with those of SAC using human gastric cancer SGC-7901 cells. SBC significantly suppressed the survival rate of SGC-7901 cells in a concentration- and time-dependent manner, and the inhibitory activities of SBC were stronger than those of SAC. Flow cytometry revealed that SBC induced G2-phase arrest and apoptosis in SGC-7901 cells. Typical apoptotic morphological changes were observed by Hoechst 33258 dye assay. SBC-treatment dramatically induced the dissipation of mitochondrial membrane potential (${\Delta}{\Psi}m$), and enhanced the enzymatic activities of caspase-9 and caspase-3 whilst hardly affecting caspase-8 activity. Furthermore, Western blotting indicated that SBC-induced apoptosis was accompanied by up-regulation of the expression of p53, Bax and the down-regulation of Bcl-2. Taken together, this study suggested that SBC exerts cytotoxic activity involving activation of mitochondrial-dependent apoptosis through p53 and Bax/Bcl-2 pathways in human gastric cancer SGC-7901 cells.

Opuntia ficus-indica 다당 A-1의 특성 및 알코올유도 간 산화스트레스의 보호 효과 (Characterization of polysaccharide A-1 from Opuntia ficus-indica and it's protection effect on alcoholic induced hepatic oxidative stress)

  • 류일환;권지웅;이어진;윤용갑;권태오
    • 대한한의학방제학회지
    • /
    • 제17권2호
    • /
    • pp.163-174
    • /
    • 2009
  • Reactive oxygen species(ROS) can induce hepatotoxicity and trigger apoptosis in the liver. In this study, we investigated the sulfated polysaccharide A-1 from Opuntia ficus-indica against alcoholic oxidative stress in human liver Hep G2 cell. An antioxidant substance A-1 obtained from the enzymatic extract of Opuntia ficus-indica fruit was purified by DEAE-cellulose ion exchange and sephadex G-100 gel permeation chromatography. The purification yield and molecular weight were 14.3% and 1.8 KDa, respectively. The A-1 predominately contained arabinose, galactose, rhamnose and also sulfate group. The structure of A-1 was investigated by periodate oxidation, FT-IR spectroscopy, $^1H$-NMR spectroscopy. The A-1 mainly composed of alternating unit of ${\rightarrow}4$)-$\alpha$-L- Rapp-2-$SO_3^-$-$\alpha$-L-Galp-($1{\rightarrow}$ and branched linkage of $\beta$-D-Arbp- ($5{\rightarrow}$. The antioxidative activity was measured using the SOD, CAT activity and GSH assay, respectively. The expression of Nrf2 protein was analyzed by western blotting. The viable cell count analyzed by autofluorescence. Oxidative stress induced by ethanol(1 M) were dramatically reduced by A-1 treatment. A-1 also prevented cell death induced by oxidative stress. It also increased expression Nrf2 protein level. We concluded that sulfated polysaccharide A-1 from Opuntia ficus-indica effectively protect Hep G2 liver cell from alcoholic oxidative stress.

  • PDF

Glycosylation Enhances the Physicochemical Properties of Caffeic Acid Phenethyl Ester

  • Moon, Keum-Ok;Park, Soyoon;Joo, Myungsoo;Ha, Ki-Tae;Baek, Nam-In;Park, Cheon-Seok;Cha, Jaeho
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권11호
    • /
    • pp.1916-1924
    • /
    • 2017
  • In this study, we synthesized a glycosylated derivative of caffeic acid phenethyl ester (CAPE) using the amylosucrase from Deinococcus geothermalis with sucrose as a substrate and examined its solubility, chemical stability, and anti-inflammatory activity. Nuclear magnetic resonance spectroscopy showed that the resulting glycosylated CAPE (G-CAPE) was the new compound caffeic acid phenethyl ester-4-O-${\alpha}-{\small{D}}$-glucopyranoside. G-CAPE was 770 times more soluble than CAPE and highly stable in Dulbecco's modified Eagle's medium and buffered solutions, as estimated by its half-life. The glycosylation of CAPE did not significantly affect its anti-inflammatory activity, which was assessed by examining lipopolysaccharide-induced nitric oxide production and using a nuclear factor erythroid 2-related factor 2 reporter assay. Furthermore, a cellular uptake experiment using high-performance liquid chromatography analysis of the cell-free extracts of RAW 264.7 cells demonstrated that G-CAPE was gradually converted to CAPE within the cells. These results demonstrate that the glycosylation of CAPE increases its bioavailability by helping to protect this vital molecule from chemical or enzymatic oxidation, indicating that G-CAPE is a promising candidate for prodrug therapy.

Molecular Characterization of a Novel Vegetative Insecticidal Protein from Bacillus thuringiensis Effective Against Sap-Sucking Insect Pest

  • Sattar, Sampurna;Maiti, Mrinal K.
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권9호
    • /
    • pp.937-946
    • /
    • 2011
  • Several isolates of Bacillus thuringiensis (Bt) were screened for the vegetative insecticidal protein (Vip) effective against sap-sucking insect pests. Screening results were based on $LC_{50}$ values against cotton aphid (Aphis gossypii), one of the dangerous pests of various crop plants including cotton. Among the isolates, the Bt#BREF24 showed promising results, and upon purification the aphidicidal protein was recognized as a binary toxin. One of the components of this binary toxin was identified by peptide sequencing to be a homolog of Vip2A that has been reported previously in other Bacillus spp. Vip2 belongs to the binary toxin group Vip1-Vip2, and is responsible for the enzymatic activity; and Vip1 is the translocation and receptor binding protein. The two genes encoding the corresponding proteins of the binary toxin, designated as vip2Ae and vip1Ae, were cloned from the Bt#BREF24, sequenced, and heterologously expressed in Escherichia coli. Aphid feeding assay with the recombinant proteins confirmed that these proteins are indeed the two components of the binary toxins, and the presence of both partners is essential for the activity. Aphid specificity of the binary toxin was further verified by ligand blotting experiment, which identified an ~50 kDa receptor in the brush border membrane vesicles of the cotton aphids only, but not in the lepidopteran insects. Our finding holds a promise of its use in future as a candidate gene for developing transgenic crop plants tolerant against sap-sucking insect pests.