DOI QR코드

DOI QR Code

Glycosylation Enhances the Physicochemical Properties of Caffeic Acid Phenethyl Ester

  • Moon, Keum-Ok (Department of Microbiology, Pusan National University) ;
  • Park, Soyoon (Department of Microbiology, Pusan National University) ;
  • Joo, Myungsoo (School of Korean Medicine, Pusan National University) ;
  • Ha, Ki-Tae (School of Korean Medicine, Pusan National University) ;
  • Baek, Nam-In (Graduate School of Biotechnology and Institute of Life Sciences & Resources, Kyung Hee University) ;
  • Park, Cheon-Seok (Graduate School of Biotechnology and Institute of Life Sciences & Resources, Kyung Hee University) ;
  • Cha, Jaeho (Department of Microbiology, Pusan National University)
  • 투고 : 2017.06.08
  • 심사 : 2017.09.04
  • 발행 : 2017.11.28

초록

In this study, we synthesized a glycosylated derivative of caffeic acid phenethyl ester (CAPE) using the amylosucrase from Deinococcus geothermalis with sucrose as a substrate and examined its solubility, chemical stability, and anti-inflammatory activity. Nuclear magnetic resonance spectroscopy showed that the resulting glycosylated CAPE (G-CAPE) was the new compound caffeic acid phenethyl ester-4-O-${\alpha}-{\small{D}}$-glucopyranoside. G-CAPE was 770 times more soluble than CAPE and highly stable in Dulbecco's modified Eagle's medium and buffered solutions, as estimated by its half-life. The glycosylation of CAPE did not significantly affect its anti-inflammatory activity, which was assessed by examining lipopolysaccharide-induced nitric oxide production and using a nuclear factor erythroid 2-related factor 2 reporter assay. Furthermore, a cellular uptake experiment using high-performance liquid chromatography analysis of the cell-free extracts of RAW 264.7 cells demonstrated that G-CAPE was gradually converted to CAPE within the cells. These results demonstrate that the glycosylation of CAPE increases its bioavailability by helping to protect this vital molecule from chemical or enzymatic oxidation, indicating that G-CAPE is a promising candidate for prodrug therapy.

키워드

참고문헌

  1. Viuda-Martos M, Ruiz-Navajas Y, Fernandez-Lopez J, Perez-Alvarez JA. 2008. Functional properties of honey, propolis, and royal jelly. J. Food Sci. 73: R117-R124. https://doi.org/10.1111/j.1750-3841.2008.00966.x
  2. Chiao C, Carothers AM, Grunberger D, Solomon G, Preston GA, Barrett JC. 1995. Apoptosis and altered redox state induced by caffeic acid phenethyl ester (CAPE) in transformed rat fibroblast cells. Cancer Res. 55: 3576-3583.
  3. Natarajan K, Singh S, Burke TR Jr, Grunberger D, Aggarwal BB. 1996. Caffeic acid phenethyl ester is a potent and specific inhibitor of activation of nuclear transcription factor NF-kappa B. Proc. Natl. Acad. Sci. USA 93: 9090-9095. https://doi.org/10.1073/pnas.93.17.9090
  4. Song YS, Park EH, Hur GM, Ryu YS, Lee YS, Lee JY, et al. 2002. Caffeic acid phenethyl ester inhibits nitric oxide synthase gene expression and enzyme activity. Cancer Lett. 175: 53-61. https://doi.org/10.1016/S0304-3835(01)00787-X
  5. Toyoda T, Tsukamoto T, Takasu S, Shi L, Hirano N, Ban H, et al. 2009. Anti-inflammatory effects of caffeic acid phenethyl ester (CAPE), a nuclear factor-kappaB inhibitor, on Helicobacter pylori-induced gastritis in Mongolian gerbils. Int. J. Cancer 125: 1786-1795. https://doi.org/10.1002/ijc.24586
  6. Orsolic N, Terzic S, Mihaljevic Z, Sver L, Basic I. 2005. Effects of local administration of propolis and its polyphenolic compounds on tumor formation and growth. Biol. Pharm. Bull. 28: 1928-1933. https://doi.org/10.1248/bpb.28.1928
  7. Tolb a MF, Azab SS, Khalifa AE, A bdel-Rahman SZ, A b del-Naim AB. 2013. Caffeic acid phenethyl ester, a promising component of propolis with a plethora of biological activities:a review on its anti-inflammatory, neuroprotective, hepatoprotective, and cardioprotective effects. IUBMB Life 65: 699-709. https://doi.org/10.1002/iub.1189
  8. Armutcu F, Akyol S, Ustunsoy S, Turan FF. 2015. Therapeutic potential of caffeic acid phenethyl ester and its antiinflammatory and immunomodulatory effects (Review). Exp. Ther. Med. 9: 1582-1588. https://doi.org/10.3892/etm.2015.2346
  9. Erdemli HK, Akyol S, Armutcu F, Akyol O. 2015. Antiviral properties of caffeic acid phenethyl ester and its potential application. J. Intercult. Ethnopharmacol. 4: 344-347. https://doi.org/10.5455/jice.20151012013034
  10. Juman S, Yasui N, Ikeda K, Ueda A, Sakanaka M, Negishi H, et al. 2012. Caffeic acid phenethyl ester suppresses the production of pro-inflammatory cytokines in hypertrophic adipocytes through lipopolysaccharide-stimulated macrophages. Biol. Pharm. Bull. 35: 1941-1946. https://doi.org/10.1248/bpb.b12-00317
  11. Song JJ, Lim HW, Kim K, Kim KM, Cho S, Chae SW. 2012. Effect of caffeic acid phenethyl ester (CAPE) on $H_2O_2$ induced oxidative and inflammatory responses in human middle ear epithelial cells. Int. J. Pediatr. Otorhinolaryngol. 76: 675-679. https://doi.org/10.1016/j.ijporl.2012.01.041
  12. Akyol S, Ginis Z, Armutcu F, Ozturk G, Yigitoglu MR, Akyol O. 2012. The potential usage of caffeic acid phenethyl ester (CAPE) against chemotherapy-induced and radiotherapyinduced toxicity. Cell Biochem. Funct. 30: 438-443. https://doi.org/10.1002/cbf.2817
  13. Craig DQ. 2002. The mechanisms of drug release from solid dispersions in water-soluble polymers. Int. J. Pharm. 231:131-144. https://doi.org/10.1016/S0378-5173(01)00891-2
  14. Leuner C, Dressman J. 2000. Improving drug solubility for oral delivery using solid dispersions. Eur. J. Pharm. Biopharm. 50: 47-60. https://doi.org/10.1016/S0939-6411(00)00076-X
  15. Couvreur P. 2012. Nanotechnologies for designing new medicines. Biol. Aujourdhui 206: 237-248. https://doi.org/10.1051/jbio/2012025
  16. Dinarvand R, Sepehri N, Manoochehri S, Rouhani H, Atyabi F. 2011. Polylactide-co-glycolide nanoparticles for controlled delivery of anticancer agents. Int. J. Nanomedicine 6: 877-895.
  17. Steichen SD, Caldorera-Moore M, Peppas NA. 2013. A review of current nanoparticle and targeting moieties for the delivery of cancer therapeutics. Eur. J. Pharm. Sci. 48: 416-427. https://doi.org/10.1016/j.ejps.2012.12.006
  18. Kim MK, Park KS, Lee C, Park HR, Choo H, Chong Y. 2010. Enhanced stability and intracellular accumulation of quercetin by protection of the chemically or metabolically susceptible hydroxyl groups with a pivaloxymethyl (POM) promoiety. J. Med. Chem. 53: 8597-8607. https://doi.org/10.1021/jm101252m
  19. Szente L, Szejtli J. 1999. Highly soluble cyclodextrin derivatives: chemistry, properties, and trends in development. Adv. Drug Deliv. Rev. 36: 17-28. https://doi.org/10.1016/S0169-409X(98)00092-1
  20. Park H, Kim J, Choi KH, Hwang S, Yang SJ, Baek NI, et al. 2012. Enzymatic synthesis of piceid glucosides using maltosyltransferase from Caldicellulosiruptor bescii DSM 6725. J. Agric. Food Chem. 60: 8183-8189. https://doi.org/10.1021/jf302127a
  21. Kometani T, Terada Y, Nishimura T, Takii H, Okada S. 1994. Transglycosylation to hesperidin by cyclodextrin glucanotransferase from an alkalophilic Bacillus species in alkaline pH and properties of hesperidin glycosides. Biosci. Biotechnol. Biochem. 58: 1990-1994. https://doi.org/10.1271/bbb.58.1990
  22. Yamada M, Tanabe F, Arai N, Mitsuzumi H, Miwa Y, Kubota M, et al. 2006. Bioavailability of glucosyl hesperidin in rats. Biosci. Biotechnol. Biochem. 70: 1386-1394. https://doi.org/10.1271/bbb.50657
  23. Ohtsuki K, Abe A, Mitsuzumi H, Kondo M, Uemura K, Iwasaki Y, et al. 2003. Glucosyl hesperidin improves serum cholesterol composition and inhibits hypertrophy in vasculature. J. Nutr. Sci. Vitaminol. (Tokyo) 49: 447-450. https://doi.org/10.3177/jnsv.49.447
  24. Seo DH, Jung JH, Ha SJ, Song MC, Cha J, Yoo SH, et al. 2009. Highly selective biotransformation of arbutin to arbutin-alpha-glucoside using amylosucrase from Deinococcus geothermalis DSM 11300. J. Mol. Catal. B Enzym. 60: 113-118. https://doi.org/10.1016/j.molcatb.2009.04.006
  25. Jung JH, Seo DH, Ha SJ, Song MC, Cha J, Yoo SH, et al. 2009. Enzymatic synthesis of salicin glycosides through transglycosylation catalyzed by amylosucrases from Deinococcus geothermalis and Neisseria polysaccharea. Carbohydr. Res. 344:1612-1619. https://doi.org/10.1016/j.carres.2009.04.019
  26. Cho HK, Kim HH, Seo DH, Jung JH, Park JH, Baek NI, et al. 2011. Biosynthesis of (+)-catechin glycosides using recombinant amylosucrase from Deinococcus geothermalis DSM 11300. Enzyme Microb. Technol. 49: 246-253. https://doi.org/10.1016/j.enzmictec.2011.05.007
  27. Kim KH, Park YD, Park H, Moon KO, Ha KT, Baek NI, et al. 2014. Synthesis and biological evaluation of a novel baicalein glycoside as an anti-inflammatory agent. Eur. J. Pharmacol. 744: 147-156. https://doi.org/10.1016/j.ejphar.2014.10.013
  28. Kim MD, Jung DH, Seo DH, Jung JH, Seo EJ, Baek NI, et al. 2016. Acceptor specificity of amylosucrase from Deinococcus radiopugnans and its application for synthesis of rutin derivatives. J. Microbiol. Biotechnol. 26: 1845-1854. https://doi.org/10.4014/jmb.1606.06036
  29. Choi JY, Kwun MJ, Kim KH, Lyu JH, Han CW, Jeong HS, et al. 2012. Protective effect of the fruit hull of Gleditsia sinensis on LPS-induced acute lung injury is associated with Nrf2 activation. Evid. Based Complement. Alternat. Med. 2012: 974713.
  30. Kim KH, Park H, Park HJ, Choi KH, Sadikot RT, Cha J, et al. 2016. Glycosylation enables aesculin to activate Nrf2. Sci. Rep. 6: 29956. https://doi.org/10.1038/srep29956
  31. Emond S, Mondeil S, Jaziri K, Andre I, Monsan P, Remaud-Simeon M, et al. 2008. Cloning, purification and characterization of a thermostable amylosucrase from Deinococcus geothermalis. FEMS Microbiol. Lett. 285: 25-32. https://doi.org/10.1111/j.1574-6968.2008.01204.x
  32. Nishimura T, Kometani T, Takii H, Terada Y, Okada S. 1995. Glucosylation of caffeic acid with Bacillus subtilis X-23 alpha-amylase and a description of the glucosides. J. Ferment. Bioeng. 80: 18-23. https://doi.org/10.1016/0922-338X(95)98170-P
  33. Meng W, Xiaoliang R, Xiumei G, Vincieri FF, Bilia AR. 2009. Stability of active ingredients of traditional Chinese medicine (TCM). Nat. Prod. Commun. 4: 1761-1776.
  34. Walle T , Wen X, W alle U K. 2007. Improving metabolic stability of cancer chemoprotective polyphenols. Expert Opin. Drug Metab. Toxicol. 3: 379-388. https://doi.org/10.1517/17425255.3.3.379
  35. Jung WK, Choi I, Lee DY, Yea SS, Choi YH, Kim MM, et al. 2008. Caffeic acid phenethyl ester protects mice from lethal endotoxin shock and inhibits lipopolysaccharide-induced cyclooxygenase-2 and inducible nitric oxide synthase expression in RAW 264.7 macrophages via the p38/ERK and NF-kappa B pathways. Int. J. Biochem. Cell Biol. 40: 2572-2582. https://doi.org/10.1016/j.biocel.2008.05.005
  36. Kim H, Kim W, Yum S, Hong S, Oh JE, Lee JW, et al. 2013. Caffeic acid phenethyl ester activation of Nrf2 pathway is enhanced under oxidative state: structural analysis and potential as a pathologically targeted therapeutic agent in treatment of colonic inflammation. Free Radic. Biol. Med. 65: 552-562. https://doi.org/10.1016/j.freeradbiomed.2013.07.015
  37. Stella VJ, Nti-Addae KW. 2007. Prodrug strategies to overcome poor water solubility. Adv. Drug Deliv. Rev. 59: 677-694. https://doi.org/10.1016/j.addr.2007.05.013
  38. Rautio J, K umpulainen H , Heimb ach T, O liyai R , Oh D , Jarvinen T, et al. 2008. Prodrugs: design and clinical applications. Nat. Rev. Drug Discov. 7: 255-270. https://doi.org/10.1038/nrd2468
  39. Celli N, Dragani LK, Murzilli S, Pagliani T, Poggi A. 2007. In vitro and in vivo stability of caffeic acid phenethyl ester, a bioactive compound of propolis. J. Agric. Food Chem. 55:3398-3407. https://doi.org/10.1021/jf063477o
  40. Woo HJ, Kang HK, Nguyen TT, Kim GE, Kim YM, Park JS, et al. 2012. Synthesis and characterization of ampelopsin glucosides using dextransucrase from Leuconostoc mesenteroides B-1299CB4: glucosylation enhancing physicochemical properties. Enzyme Microb. Technol. 51: 311-318. https://doi.org/10.1016/j.enzmictec.2012.07.014
  41. Moon YH, Lee JH, Ahn JS, Nam SH, Oh DK, Park DH, et al. 2006. Synthesis, structure analyses, and characterization of novel epigallocatechin gallate (EGCG) glycosides using the glucansucrase from Leuconostoc mesenteroides B-1299CB. J. Agric. Food Chem. 54: 1230-1237. https://doi.org/10.1021/jf052359i
  42. Lee SJ, Kim JC, Kim MJ, Kitaoka M, Park CS, Lee SY, et al. 1999. Transglycosylation of naringin by Bacillus stearothermophilus maltogenic amylase to give glycosylated naringin. J. Agric. Food Chem. 47: 3669-3674. https://doi.org/10.1021/jf990034u
  43. Ko JA, Ryu YB, Park TS, Jeong HJ, Kim JH, Park SJ, et al. 2012. Enzymatic synthesis of puerarin glucosides using Leuconostoc dextransucrase. J. Microbiol. Biotechnol. 22: 1224-1229. https://doi.org/10.4014/jmb.1202.02007

피인용 문헌

  1. Caffeic acid phenethyl ester (CAPE): cornerstone pharmacological studies and drug delivery systems vol.66, pp.4, 2019, https://doi.org/10.3897/pharmacia.66.e38571
  2. Naturally Derived Heme-Oxygenase 1 Inducers and Their Therapeutic Application to Immune-Mediated Diseases vol.11, pp.None, 2017, https://doi.org/10.3389/fimmu.2020.01467