• 제목/요약/키워드: environmentally friendly concrete

검색결과 73건 처리시간 0.026초

결합재량에 따른 포러스 폴리머 콘크리트의 공극률과 강도 및 식생 블록 내 초기 생장 특성 (Void Ratio and Strength of Porous Polymer Concrete and Initial Growth Properties within Planting Block with Binder Contents)

  • 성찬용;김영익
    • 한국농공학회논문집
    • /
    • 제52권6호
    • /
    • pp.101-110
    • /
    • 2010
  • This study was performed to evaluate the void ratio and strength of porous polymer concrete used coarse aggregates and unsaturated polyester resin to find optimum mix design of porous polymer concrete for planting block. Also, this study was performed to evaluate the planting properties of herbaceous plant and cool-season grass in porous polymer blocks based on the experimental results of porous polymer concrete to develop environmentally friendly planting blocks. Tests for the void ratio and compressive strength of porous polymer concrete were performed at the curing age 7 days. Also, kinds of plants such as Tall fescue, Perennial ryegrass, Lespedeza and Alfalfa for planting were applied to porous polymer blocks. Within 6 weeks after seed, initial germination ratio, cover view and growth length for planting blocks were estimated by various methods.

보도포장의 종류에 따른 보행자의 안전성 및 쾌적감에 대한 연구 (A Study on the Safety and Comfort of Pedestrians according to the Type of Sidewalk Pavement)

  • 최재진
    • 한국안전학회지
    • /
    • 제30권1호
    • /
    • pp.66-71
    • /
    • 2015
  • Safety, resilience and comfort of pedestrian were assessed by the British Pendulum Test and SB/GB factor test at 8 kinds of sidewalk pavement. Sidewalk paving materials were normal concrete, porous concrete, concrete block, soil concrete, asphalt, rubber chip/resin mixture, wood chip/resin mixture and floor tile. In addition, a survey was conducted to investigate the perception of pedestrians on the sidewalk paving material. As a result, while the skid resistance value was measured in the most 60BPN above, the floor tile showed a low value of about 30BPN. The ratios of SB factor to GB factor of the elastic pavements(rubber/resin mixture and wood chip/resin mixture) appeared to be relatively large when compared with those of the conventional sidewalks. The survey showed that respondents perceived as more safe and comfortable elastic pavements compared to conventional pavements. Approximately 50% of respondents answered that hardened soil pavement was the most environmentally friendly.

Green Technology in Concrete Industry : Geopolymer Concrete

  • Nguyen, Khoa Tan;Le, Tuan Anh;Ahn, Namshik
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2011년도 추계 학술논문 발표대회
    • /
    • pp.115-116
    • /
    • 2011
  • TNowadays, the global warming is the most serious problem in the world and the cement industry is one of the factors which are responsible for it. Therefore, the development of new binders with enhanced environment and durability performance is needed. In this regard, the geopolymer technology is one of the breakthrough developments as an alternative to the portland cement. This paper shows some points of view on the development of geopolymers by reviewing previous researches including historical background, constituents of geopolymers, process of geopolymerization and several applications of geopolymer. Hence, the author proposes two research trends which are finding the best combination between the source materials and alkali liquid then, evaluating the corrosion for the metal bars.

  • PDF

사면보호용(斜面保護用) 범용보강(凡用補强)콘크리트블록의 개발(開發) (Development of Common Reinforced Concrete Block for Slope Protection)

  • 유능환
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2005년도 학술발표논문집
    • /
    • pp.404-409
    • /
    • 2005
  • The reinforced concrete blocks for reinforced earth layer are combined with soil structures consisted of facing unit, reinforcing materials and soil. Those environmentally friendly facing units of reinforced concrete blocks are made of mine waste and tailing and that will be played a role of the effects of recycling use of wasted resources. The block are consisted of three types as curved or straight in order to control topography. The systems are also not limited to wall hight so that they are effectively used for protecting the slope of banking and cutting of earth works. The reinforced concrete blocks developed this time will be effectively applied for not only retaining wall, road, park, golf course, public office building constructions but also protecting of slope stabilization projects.

  • PDF

Effect of environmentally friendly materials on steel corrosion resistance of sustainable UHPC in marine environment

  • Tahwia, Ahmed M.;Elgendy, Gamal M.;Amin, Mohamed
    • Structural Engineering and Mechanics
    • /
    • 제82권2호
    • /
    • pp.133-149
    • /
    • 2022
  • This study investigates the resistance of sustainable ultra-high performance concrete (UHPC) on steel reinforcement corrosion. For enhancing the sustainability of UHPC, concrete mixes were prepared with ordinary Portland cement main binder, and mixes with moderate to high percentages of blast furnace cement (CEM III), fly ash (FA), and slag cement as partial replacements of the full quantity of the used cement. Linear polarization resistance technique was employed to estimate the electrochemical behavior of the concrete specimens. Results showed that the compressive strength and the resistance of steel to corrosion in marine environments can be enhanced by improving the sustainability of UHPC through incorporation of CEM III, FA, and slag cement. FA replacement of up to 50% with the addition of 15% SF content produced better compressive strength and steel corrosion resistance than slag cement whether with the use of ordinary Portland cement or blast furnace cement as the main binder.

Impact of waste crumb rubber on concrete performance incorporating silica fume and fly ash to make a sustainable low carbon concrete

  • Muhammad, Akbar;Zahoor, Hussain;Pan, Huali;Muhammad, Imran;Blessen Skariah, Thomas
    • Structural Engineering and Mechanics
    • /
    • 제85권2호
    • /
    • pp.275-287
    • /
    • 2023
  • The use of environmental-friendly building materials is becoming increasingly popular worldwide. Compared to the normal concrete, rubber-based concrete is considered more durable, environmentally friendly, socially and economically viable. In this investigation, M20 grade concrete was designed and the fine aggregates were replaced with crumb rubber of two different micron sizes (0.221 mm and 0.350 mm). Fly ash (FA) and silica fume (SF) replaces the binder as supplementary cementitious materials at a rate of 0, 5, 10, 15, and 20% by weight. The mechanical properties of concrete including compressive strength, tensile, and flexural strength were determined. The polynomial work expectation validates the response surface approach (RSM) concept for optimizing SF and FA substitution. The maximum compressive strength (22.53 MPa) can be observed for the concrete containing 10% crumb rubber, 15% fly ash and 15% silica fume. The reduced unit weight of the rubberized concrete may be attributed to the lower specific gravity of the rubber particles. Two-way ANOVA with a significance criterion of less than 0.001 has been utilized with modest residual error from the lack of fit and the pure error. The predictive model accurately forecasts the variable-response relationship. Since, the crumb rubber is obtained from wasted tires incorporating FA and SF as a cementitious ingredient, it helps to significantly improve mechanical properties of concrete and reduce environmental degradation.

Development of an integrated machine learning model for rheological behaviours and compressive strength prediction of self-compacting concrete incorporating environmental-friendly materials

  • Pouryan Hadi;KhodaBandehLou Ashkan;Hamidi Peyman;Ashrafzadeh Fedra
    • Structural Engineering and Mechanics
    • /
    • 제86권2호
    • /
    • pp.181-195
    • /
    • 2023
  • To predict the rheological behaviours along with the compressive strength of self-compacting concrete that incorporates environmentally friendly ingredients as cement substitutes, a comparative evaluation of machine learning methods is conducted. To model four parameters, slump flow diameter, L-box ratio, V-funnel time, as well as compressive strength at 28 days-a complete mix design dataset from available pieces of literature is gathered and used to construct the suggested machine learning standards, SVM, MARS, and Mp5-MT. Six input variables-the amount of binder, the percentage of SCMs, the proportion of water to the binder, the amount of fine and coarse aggregates, and the amount of superplasticizer are grouped in a particular pattern. For optimizing the hyper-parameters of the MARS model with the lowest possible prediction error, a gravitational search algorithm (GSA) is required. In terms of the correlation coefficient for modelling slump flow diameter, L-box ratio, V-funnel duration, and compressive strength, the prediction results showed that MARS combined with GSA could improve the accuracy of the solo MARS model with 1.35%, 11.1%, 2.3%, as well as 1.07%. By contrast, Mp5-MT often demonstrates greater identification capability and more accurate prediction in comparison to MARS-GSA, and it may be regarded as an efficient approach to forecasting the rheological behaviors and compressive strength of SCC in infrastructure practice.

Effect of granite fines on mechanical and microstructure properties of concrete

  • Jain, Kishan Lal;Sancheti, Gaurav
    • Advances in concrete construction
    • /
    • 제13권6호
    • /
    • pp.461-470
    • /
    • 2022
  • Solid waste management is of great concern in today's world. An enormous amount of waste is generated from various industrial activities. Concrete production utilizing some of the potential waste materials will add to the benefit of society. These benefits will include reduction of landfill burden, improved air quality, riverbed protection due to excessive sand excavation, economical concrete production and much more. This study aims to utilize waste granite powder (GP) originating from granite industries as a sand replacement in concrete. Fine GP was collected in the form of slurry from different granite cutting industries. In this study, GP was added in an interval of ten percent as 10%, 20%, 30%, 40% and 50% by weight of sand in concrete. Mechanical assets; compressive strength, flexural strength and splitting tensile strength were prominent for control and blended mixes. Modulus of elasticity (MoE) and abrasion tests were also performed on control and blended specimens of concrete. To provide a comprehensive clarification for enhanced performance of GP prepared concrete samples, scanning electron microscopy (SEM) and X-ray diffraction (XRD) were performed. Results indicate that 30% replacement of sand by weight with GP enhances the mechanical assets of concrete and even the results obtained for 50% replacement are also acceptable. Comprehensive analysis through SEM and XRD for 30% replacement was better than control one. The performance of GP added to concrete in terms of abrasion and modulus of elasticity was far better than the control mix. A significant outcome shows the appropriateness of granite fines to produce sustainable and environmentally friendly concrete.

Compressive Behaviour of Geopolymer Concrete-Filled Steel Columns at Ambient and Elevated Temperatures

  • Tao, Zhong;Cao, Yi-Fang;Pan, Zhu;Hassan, Md Kamrul
    • 국제초고층학회논문집
    • /
    • 제7권4호
    • /
    • pp.327-342
    • /
    • 2018
  • Geopolymer concrete (GPC), which is recognised as an environmentally friendly alternative to ordinary Portland cement (OPC) concrete, has been reported to possess high fire resistance. However, very limited research has been conducted to investigate the behaviour of geopolymer concrete-filled steel tubular (GCFST) columns at either ambient or elevated temperatures. This paper presents the compressive test results of a total of 15 circular concrete-filled steel tubular (CFST) stub columns, including 5 specimens tested at room temperature, 5 specimens tested at elevated temperatures and the remaining 5 specimens tested for residual strength after exposure to elevated temperatures. The main variables in the test program include: (a) concrete type; (b) concrete strength; and (c) curing condition of geopolymer concrete. The test results demonstrate that GCFST columns have similar ambient temperature behaviour compared with the conventional CFST counterparts. However, GCFST columns exhibit better fire resistance than the conventional CFST columns. Meanwhile, it is found that the GCFST column made with heat cured GPC has lower strength loss than other columns after exposure to elevated temperatures. The research results highlight the possibility of using geopolymer concrete to improve the fire resistance of CFST columns.

Improving compressive strength of low calcium fly ash geopolymer concrete with alccofine

  • Jindal, Bharat Bhushan;Singhal, Dhirendra;Sharma, Sanjay K.;Ashish, Deepankar K.;Parveen, Parveen
    • Advances in concrete construction
    • /
    • 제5권1호
    • /
    • pp.17-29
    • /
    • 2017
  • Geopolymer concrete is environmentally friendly and could be considered as a construction material to promote the sustainable development. In this paper fly ash based geopolymer concretes with different percentages of alccofine were made by mixing sodium hydroxide and sodium silicate as an alkaline activator and cured at ambient as well as heat environment in an electric oven at $90^{\circ}C$. Effects of various parameters such as the percentage of alccofine, curing temperature, a period of curing, fly ash content, was studied on compressive strength as well as workability of geopolymer concrete. The study concludes that the presence of alccofine improves the properties of geopolymer concrete during a fresh and hardened state of concrete. Geopolymer concrete in the presence of alccofine can be used for the general purpose of concrete as required compressive strength can be achieved even at ambient temperature. The 28 days compressive strength of 73 MPa, when cured at 90-degree Celsius, confirmed that it is also very suitable for precast concrete components.