• Title/Summary/Keyword: environmental water quality

Search Result 4,182, Processing Time 0.026 seconds

Derivation of Agricultural Water Quality Guidelines for Heavy Metals in Korea (국내 농업용수의 유해중금속 수질권고기준 도출)

  • An, Youn-Joo;Baek, Yong-Wook;Lee, Woo-Mi;Yoon, Chun-Gyeong
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.5
    • /
    • pp.533-536
    • /
    • 2008
  • Korean water quality guidelines for agricultural were derived to protect agricultural water uses according to the Canadian methodology. The adverse effect of heavy metals in agricultural water was of concern due to its persistence, bioaccumulation and ecotoxicity to crop plants. The ecotoxicity data of cadmium, copper, lead, and zinc were collected for the crops grown in Korea, and used to estimate the species maximum acceptable toxicant concentration (SMATC), which corresponds to the water quality guideline. Values of irrigation per year and soil bulk density were revised to reflect the Korean situation. The estimated guideline values for cadmium, copper, lead, and zinc were 0.01, 0.5, 0.1, and 1.0 mg/L, respectively. These values are in agreement with the agricultural water quality guidelines of foreign countries and current Korean water quality standard for the protection of public health. Current water quality standards in agricultural uses were for management of public water resource, and was not prepared to protect crop plants from contaminants. The results of this study will be a basis for the designation of Korean water quality guidelines for the protection of agricultural water uses in the future.

Evaluation of Corrosion Index by Water Quality Parameters in Korea (국내 수질에 적합한 부식성지수 선정 연구)

  • Ahn, Kyunghee;Yu, Soonju;Park, Sujeong;Kwon, Ohsang
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.4
    • /
    • pp.615-623
    • /
    • 2012
  • In this study, we evaluate the corrosion indexes (CI) such as Langelier Index (LI), Larson ratio (LR), Ryznar saturation index (RSI), Aggressiveness index (AI) of water quality for raw water, treated water and water in distribution reservoir at major eight drinking water treatment plants (DWTPs) in Korea. By analyzing secondary contamination of tap water, the variation of secondary contaminants was investigated with regard to pipe materials, aging and corrosion index (CI). In addition, we suggested an appropriate CI applicable water quality and the management plan for CI monitoriing. All CI showed corrosive water quality, and they did not change significantly in the distribution network. However, Copper (Cu), iron (Fe) and zinc (Zn) concentrations as secondary contaminants increased through the distribution network. Among CI, LI was most sensitive to changes in raw water quality and drinking water treatment. Also, it has high correlations with other indexes such as RSI, AI. Therefore, LI is considered as an appropriate CI to the domestic water quality. Based on these result, we propose LI as a drinking water quality standard to control the pipe corrosion from DWTPs.

Simulation of Tidal Flow and Water Quality in Onsan Harbor System (온산 항만 시스템에서 조류와 수질 변화 시뮬레이션)

  • Kim, So-Yeon;Park, Seok-Soon
    • Journal of Environmental Impact Assessment
    • /
    • v.8 no.3
    • /
    • pp.13-22
    • /
    • 1999
  • Tidal flow and water quality were simulated in this paper to assess environmental impact caused by pier construction projects in Onsan harbor system. The Surfacewater Modeling System (SMS) was applied to the Onsan harbor system, where coastal reclamation and dredging were planned to build the piers. A finite element mesh was constructed and refined to cover the complicated geometry of the Onsan harbor and the proposed reclamation area. The time variable change of tidal height at harbor inlet was given as an input condition to tidal simulation. The water quality simulation was based on the discharge rate of suspended solids at the reclamation area. The simulation results have shown reasonable agreements with real situations in both tidal flow and water quality. According to the proposed plan, tidal flow and water quality were predicted during and after the pier construction. The tidal simulation study showed that there would be no discernible change of tidal current in the harbor except for the dredged area. The water quality simulation, however, predicted that suspended solids would increase significantly near the reclaimed and dredged areas during construction.

  • PDF

Characteristics of Trend and Pattern for Water Quality Monitoring Networks Data using Seasonal-kendall, SOM and RDA on the Mulgeum in the Nakdong River (경향성 및 패턴 분석을 이용한 낙동강 물금지역의 수질 특성)

  • Ahn, Jung-Min;Lee, In-Jung;Jung, Kang-Young;Kim, Jueon;Lee, Kwonchul;Cheon, Seuk;Lyu, Siwan
    • Journal of Environmental Science International
    • /
    • v.25 no.3
    • /
    • pp.361-371
    • /
    • 2016
  • Ministry of Environment has been operating water quality monitoring network in order to obtain the basic data for the water environment policies and comprehensively understand the water quality status of public water bodies such as rivers and lakes. The observed water quality data is very important to analyze by applying statistical methods because there are seasonal fluctuations. Typically, monthly water quality data has to analyze that the transition comprise a periodicity since the change has the periodicity according to the change of seasons. In this study, trends, SOM and RDA analysis were performed at the Mulgeum station using water quality data for temperature, BOD, COD, pH, SS, T-N, T-P, Chl-a and Colon-bacterium observed from 1989 to 2013 in the Nakdong River. As a result of trends, SOM and RDA, the Mulgeum station was found that the water quality is improved, but caution is required in order to ensure safe water supply because concentrations in water quality were higher in the early spring(1~3 month) the most.

Evaluation of Stream Water Quality to Select Target Indicators for the Management of Total Maximum Daily Loads (수질오염총량관리 대상물질 선정을 위한 하천수질 평가)

  • Park, Jun Dae;Park, Jae Hong;Oh, Seung Young;Lee, Jae Kwan
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.5
    • /
    • pp.630-640
    • /
    • 2013
  • It is one of the most critical steps identifying impaired waterbodies exactly in the selection of target water quality indicators for the management of Total Maximum Daily Loads (TMDLs). Excess ratio and excess level were applied and analyzed by the stream zone basis in order to evaluate water impairment for Nakdong, Geum, Youngsan and Seomjin rivers. Each river basin was divided into stream zones in the light of its watershed and waterbody characteristics. Selected water quality parameters discussed in this study were pH, DO, BOD, COD, SS, T-P, T-Coli and F-Coli. The excess ratios of the water quality parameters were used to discriminate water bodies that did not meet water quality standards. The excess levels were used to classify the degradation of water quality. The excess ratios and the excess levels to the water quality criteria of the medium influence areas were used for each stream zone. The results indicate that the excess ratios and the excess levels are varied on the stream zone in each river basin. Three parameters, pH, DO and SS, met water quality standards in all stream zones. The other five parameters indicated very high excess ratios in most waterbodies, and especially T-P and T-Coli revealed to be very high excess levels in some waterbodies. These parameters could be considered as major target indicators for the management of TMDLs.

A Study of Computer Models Used in Environmental Impact Assessment I : Water Quality Models (환경영향평가에 사용되는 컴퓨터 모델에 관한 연구 I : 수질 모델)

  • Park, Seok-Soon;Na, Eun-Hye
    • Journal of Environmental Impact Assessment
    • /
    • v.9 no.1
    • /
    • pp.13-24
    • /
    • 2000
  • This paper presents a study of water quality model applications in environmental impact statements which were submitted during recent years in Korea. Most of the applications have reported that the development projects would have significant impacts on the water quality, especially, of streams and rivers. The water quality models, however, were hardly used as an impact prediction tool. Even in the cases where models were used, calibration and verification studies were not performed and thus the predicted results would not be reliable. These poor model applications in environmental impact assessment can be attributable to the fact that there were no available model application guidelines as well as no requirements by the review agency. In addition, the expected waste loads were improperly estimated in most cases, especially in non-point sources, and the predicted parameters were not good enough to understand water quality problems expected from the proposed plans. The effects of mitigation measures were not analyzed in most cases. Again, these can be attributed to no formal guidelines available for impact predictions until now. A brief guideline is described in this paper, including model selection, calibration and verification, impact prediction, and analysis of effects of mitigation measures. The results of this study indicate that the model application should be required to overcome the current improper predictions of environmental impacts and the guidelines should be developed in detail and provided.

  • PDF

Water Quality Simulation of Juam Reservoir Depend on Total Pollution Loads Control (총량규제에 따른 주암호의 장래 수질 예측)

  • Jang, Sung-Ryong;An, Ki-Sun;Kwon, Young-Ho;Han, Jae-Ik
    • Journal of Environmental Science International
    • /
    • v.19 no.1
    • /
    • pp.39-45
    • /
    • 2010
  • When the Juam multipurpose dam which is connected with existing large water supply facilities is finished, water environment is changed from stream to lake. The changed quality of water should be examined. In this study, the result of water quality forecasting is analysed and an effective management plan of water quality is presented. Tn this study, the WASPS model that is a dynamic water quality simulation model was selected to forecast the water quality. This model forecasts movement of change of pollutants. For an application of the model, the subject areas were divided into seventeen sub-areas by considering change temperature depending measuring points and on depth of water. Meteorological data collected by the meteorological observatory and data about quality measured by the Korea Water Resources Development Corporation were used for an operation of the model. As a result of quality examination through quality data and estimated pollutant loading, the water quality environment criterion was grade II and the nutritive condition was measured as meso-graphic grade. In this study, an effective management was planned to improve water quality by reducing pollution load. According to the result of examination, when more than 30% of BOD was reduced it was recorded that the environment standard of water quality was improved to the second grade.

Water Quality Level of the Living Environmental Standards and Regression Analysis in the Major Tributaries of the Nakdong River (낙동강 주요 지류에서 생활환경 기준 수질 성분의 수질등급 및 회귀분석)

  • Kang, Dong-hwan;So, Yoon-hwan;Park, Kyeong-deok;Kim, Il-kyu;Kim, Byung-Woo
    • Journal of Environmental Science International
    • /
    • v.28 no.3
    • /
    • pp.357-369
    • /
    • 2019
  • In this study, the water quality components (pH, BOD, COD, TOC, SS, DO, TP) and the water quality, observed for 10 years (2008~2017) in the five tributaries of the Nakdong River with the highest flow rates, were analyzed. Monthly levels of the water quality components were estimated and regression functions were used to quantitatively explain the changes in the BOD and COD components, with respect to the TOC components. The results of analyzing the water quality levels in terms of the living environmental standards show that the lowest water quality was observed midstream (ST-3) and the highest water quality was observed upstream (ST-1 and ST-2). The regression function was estimated to be a linear function in all five tributaries, and the goodness of fit of the function was high upstream (ST-2), midstream (ST-3), and downstream (ST-4). According to the regression analysis using the observation data from 2008~2017, we found that the consumption of dissolved oxygen increased with an increase in organic matter in the major tributaries of the Nakdong River.

A Non-parametric Analysis of the Tam-Jin River : Data Homogeneity between Monitoring Stations (탐진강 수질측정 지점 간 동질성 검정을 위한 비모수적 자료 분석)

  • Kim, Mi-Ah;Lee, Su-Woong;Lee, Jae-Kwan;Lee, Jung-Sub
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.6
    • /
    • pp.651-658
    • /
    • 2005
  • The Non-parametric Analysis is powerful in data test especially for the non- normality water quality data. The data at three monitoring stations of the Tam-Jin River were evaluated for their normality using Skewness, Q-Q plot and Shapiro-Willks tests. Various constituent of water quality data including temperature, pH, DO, SS, BOD, COD, TN and TP in the period of January 1994 to December 2004 were used as dataset. Shapiro-Willks normality test was carried out for a test 5% significance level. Most water quality data except DO at monitoring stations 1 and 2 showed that data does not normally distributed. It is indicating that non-parametric method must be used for a water quality data. Therefore, a homogeneity was conducted by Mann-Whitney U test (p<0.05). Two stations were paired in three pairs of such stations. Differences between stations 1, 2 and stations 1, 3 for pH, BOD, COD, TN and TP were meaningful, but Tam-Jin 2 and 3 stations did not meaningful. In addition, a narrow gap of the water quality ranges is not a difference. Categories in which all three pairs of stations (1 and 2, 2 and 3, 1 and 3) in the Tam-Jin River showed difference in water quality were analyzed on TN and TP. The results of in this research suggest a right analysis in the homogeneity test of water quality data and a reasonable management of pollutant sources.

Water quality analyses between tap water and treated water by point-of-use water dispenser systems (정수기 공급수인 수돗물과 정수기 통과수의 수질차이 분석)

  • Park, Keun-Young;Park, Ji-Won;Kim, Jae-Hyeok;Na, Yeong;Maeng, Sung-Kyu;Kim, Sung-Pyo;Kweon, Ji-Hyang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.5
    • /
    • pp.395-404
    • /
    • 2019
  • The point-of-use water dispenser systems are widely used because of convenience in handling and demand for high-quality drinking water. The application has been increased recently in the public places such as department stores, universities and the rest areas in express ways. Improvement of water qualities by the dispenser systems was compared with tap water in this study. The tap water is supplied to the dispenser as the influent of the dispenser system. The twelve dispensers in the public places were used. The five dispensers used reverse osmosis as the main filter and other dispensers used various filters such as ultrafiltration, nanofiltration, and alumina filter. The water quality indicators for sanitation safety, i.e., turbidity and total coliforms, were evaluated. Other water qualities such as pH, residual chlorine, heterotrophic plate count (HPC), and total cell counts were also analyzed. By the point-of-use water dispenser, the turbidity, residual chlorine and pH were decreased and the HPC and total cell counts were increased. The t-test results revealed that the HPC of the tap waters were not significantly different from the treated waters but the total cell counts of the two groups were significantly different. The low pH of the RO filter treatment was also significantly different from the tap waters. This study will contribute to understand the role of the point-of-use water dispenser in improving water quality and to identify key water quality for the proper maintenance of the dispenser systems.