• 제목/요약/키워드: environmental uncertainties

검색결과 444건 처리시간 0.024초

Fuzzy Monte Carlo simulation을 이용한 물리 사면 모델 기반의 상주지역 산사태 취약성 분석 (Physically Based Landslide Susceptibility Analysis Using a Fuzzy Monte Carlo Simulation in Sangju Area, Gyeongsangbuk-Do)

  • 장정윤;박혁진
    • 자원환경지질
    • /
    • 제50권3호
    • /
    • pp.239-250
    • /
    • 2017
  • 정량적인 산사태 취약성 분석 중 물리 모델 기반의 분석(physically based approach)은 산사태의 발생 메커니즘 과정을 고려할 수 있는 장점으로 인해 다양한 취약성 분석기법 중 가장 효과적인 기법으로 알려져 있다. 물리 모델 분석은 사면의 지형학적 및 지질공학적 특성과 관련된 입력 자료들을 활용하는데, 현장으로부터 지질공학적 특성을 획득하는 과정에서 지반의 공간적 변동성과 복잡한 지질조건으로 인해 불확실성이 발생하며 이는 부정확한 결과를 초래한다. 따라서 이러한 불확실성을 정량화하기 위하여 확률론적 기법이 활용되어 왔다. 그러나 확률론적 분석을 수행하기 위해 필요한 입력변수의 확률특성은 현장 조사나 실험에서의 수량 제약으로 인하여 정확하게 파악하기 힘들다는 문제가 발생한다. 따라서 본 연구에서는 이러한 원인으로 인해 발생하는 불확실성을 다루기 위하여 퍼지집합이론(fuzzy set theory)을 활용하였다. 특히, 본 연구에서는 퍼지집합이론과 몬테카를로기법(Monte Carlo simulation)을 결합한 분석기법을 제안하였고 이를 실제 산사태가 발생한 연구지역에 적용하여 적정성을 파악하였다. 이를 위하여 1998년 8월 대규모의 산사태가 발생한 경상북도 상주시 일대를 연구지역으로 선정하고 산사태 취약성 분석을 수행하였다. 또한 퍼지몬테카를로기법(Fuzzy Monte Carlo simulation)의 예측 정확도 비교를 위해, 기존의 확률론적 기법인 몬테카를로기법(Monte Carlo simulation)과 안전율 수행 결과와 비교분석 하였다. 그 결과 퍼지몬테카를로기법(Fuzzy Monte Carlo simulation)이 다른 기법에 비해 가장 좋은 예측의 정확도를 보였다.

현장시험을 이용한 인천 송도지반의 변동성 분석 (Geotechnical Variability Characterization of Songdo area in Incheon by Field Tests)

  • 김동휘;배경두;이주형;이우진
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 세계 도시지반공학 심포지엄
    • /
    • pp.1435-1440
    • /
    • 2009
  • Geotechnical variability is a complex feature that results from many independent sources of uncertainties, and is mainly affected by inherent variability and measurement errors. This study evaluates the coefficient of variation (COV) of soil properties at Song-do region in Korea for evaluating inherent soil variability. Since soil variability is sensitive to soil layers and soil types, the COVs by soil layers (reclaimed layer and marine layer) and the COVs by soil types (clay and silt) were separately evaluated. It is observed that geotechnical variability of marine layer and clay is relatively smaller than that of reclamation layer and silt.

  • PDF

국내 대수층 특성을 반영한 포화대 내 유류오염물질 거동 개념 모델에서 수리동역학적 및 반응 입력인자 민감도 평가 (Sensitivity Analysis of Hydrodynamic and Reaction Parameters in Gasoline Transport Conceptual Aquifer Model Based on Hydrogeological Characteristics of Korea)

  • 주진철;이동휘;문희선;장선우;이수형;이은희;남경필
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제25권1호
    • /
    • pp.37-52
    • /
    • 2020
  • Sensitivity analysis of hydrodynamic and reaction parameters in conceptual model reflecting aquifer characteristics of Korea was performed to evaluate the uncertainty in the predicted concentrations. Among the hydrodynamic input parameters, both hydraulic conductivity (Kx) and hydraulic gradient (I) affected transport behaviors of contaminants, and resulted in same convergence concentrations with continuous injections of contaminant. However, longitudinal dispervisity (αL) affected both transport behaviors and the convergence concentrations of contaminants. Compared to the hydrodynamic parameters, growth kinetic and degradation parameters (μm & Kc) more significantly affected both transport behaviors and the convergence concentrations of contaminants, indicating those parameters had higher sensitivity indices causing the uncertainties of model predictions. Considering that the sensitivity indices of both hydrodynamic and reaction parameters were a function of transport distance of groundwater, the parameters with higher sensitivity indices, a priori, need to be investigated using conceptual model reflecting site-specific aquifer characteristics before field investigation. After determining the parameters with higher sensitivity indices, the detail field investigations for the selected hydrodynamic and reaction parameters were warranted to reduce the uncertainties of model predictions.

싸락눈 종단 속도의 불확실성이 구름 모의에 미치는 영향 (Effects of Uncertainty in Graupel Terminal Velocity on Cloud Simulation)

  • 이현호;백종진
    • 대기
    • /
    • 제26권3호
    • /
    • pp.435-444
    • /
    • 2016
  • In spite of considerable progress in the recent decades, there still remain large uncertainties in numerical cloud models. In this study, effects of uncertainty in terminal velocity of graupel on cloud simulation are investigated. For this, a two-dimensional bin microphysics cloud model is employed, and deep convective clouds are simulated under idealized environmental conditions. In the sensitivity experiments, the terminal velocity of graupel is changed to twice and half the velocity in the control experiment. In the experiment with fast graupel terminal velocity, a large amount of graupel mass is present in the lower layer. On the other hand, in the experiment with slow graupel terminal velocity, almost all graupel mass remains in the upper layer. The graupel size distribution exhibits that as graupel terminal velocity increases, in the lower layer, the number of graupel particles increases and the peak radius in the graupel mass size distribution decreases. In the experiment with fast graupel terminal velocity, the vertical velocity is decreased mainly due to a decrease in riming that leads to a decrease in latent heat release and an increase in evaporative cooling via evaporation, sublimation, and melting that leads to more stable atmosphere. This decrease in vertical velocity causes graupel particles to fall toward the ground easier. By the changes in graupel terminal velocity, the accumulated surface precipitation amount differs up to about two times. This study reveals that the terminal velocity of graupel should be estimated more accurately than it is now.

GCM과 수문모형의 불확실성을 고려한 기후변화에 따른 한반도 미래 수자원 전망 (Future Korean Water Resources Projection Considering Uncertainty of GCMs and Hydrological Models)

  • 배덕효;정일원;이병주;이문환
    • 한국수자원학회논문집
    • /
    • 제44권5호
    • /
    • pp.389-406
    • /
    • 2011
  • 본 연구에서는 GCM 및 유출모형의 불확실성을 고려하여 기후변화에 따른 미래 한반도 수자원의 변화를 전망하고, 그 결과에서 나타나는 불확실성을 평가하고자 하였다. 온실가스 배출시나리오와 GCMs의 불확실성을 고려하기 위해 IPCC AR4에 적용되었던 3개 시나리오(A2, A1B, B1)에 대한 13 GCMs 결과를 이용하였으며, 유출모형 구조 및 증발산량 산정방법에 따른 영향을 고려하기 위해 PRMS, SWAT, SLURP 모형을 선정하였고 각 모형별로 2~3개의 증발산량 방법을 고려하였다. 결과적으로 우리나라 109개 중권역 유역에 대해 312개의 결과가 제시되었으며, 이를 이용하여Gaussian kernel density function을 산정함으로써 평가결과의 앙상블 평균과 불확실성을 동시에 제시하였다. 분석 결과 여름철과 겨울철 유출량은 증가, 봄철은 감소할 것으로 전망되었다. 연평균유출량은 전체유역에서 증가할 것으로 전망되었으며, 공간적으로는 한강유역이 위치한 북쪽유역이 남쪽유역에 비해연 유출량이 더 크게 증가할 것으로 전망되었다. 연평균유출량의 증가는 여름철 유출량 증가에 따른 결과로, 기후변화의 영향은 한국에서 유출량의 계절편중을 심화시켜 수자원 관리를 더욱 어렵게 할 것으로 전망되었다. 평가결과에서 나타난 불확실성은 겨울철 유출량에서 가장 크고 여름철 유출량에서 가장 적은 것으로 나타났다.

기업 내부 부서간의 협력이 신제품 개발성과에 미치는 영향: 환경적 불확실성의 조절효과를 중심으로 (The impact of firm's intra-cooperation practice on NPD performance: with focus on the moderating effect of environmental uncertainty)

  • 이창기;정욱
    • 품질경영학회지
    • /
    • 제42권4호
    • /
    • pp.617-632
    • /
    • 2014
  • Purpose: This study aims to explore the relationship between the focal firm's interdepartmental cooperation and new product development (NPD) performance with focus on the moderating effect of environmental uncertainty. The basic hypothesized model is that there are positively associated relationships. Methods: The proposed research model was tested using structural equation modeling with 601 responses from multi-functional and multiple respondents in Korean manufacturing firms. Multi-group SEM analyses were conducted to explore the degree to which the hypothesized model was equivalent for different levels of environmental uncertainty. Results: Interdepartmental cooperation between R&D and production is positively associated with NPD performance under both higher and lower environmental uncertainties, while one between R&D and marketing is positively associated under only higher environmental uncertainty. Conclusion: This paper determined that NPD performance is positively correlated with R&D-production cooperation in a focal firm, and the relationship between R&D-marketing cooperation and NPD performance is positively moderated by level of environmental uncertainty. Consequently, this study suggests that it is always important for firms to put much effort on R&D-production cooperation for a better NPD performance, while R&D-marketing cooperation should be enhanced especially under higher environmental uncertainty than lower.

GC의 주입방식 차에 따른 고농도 악취황 성분의 검량오차 연구 : 주입부피의 고정방식 대비 주입농도의 고정방식 간 비교연구 (The Selection of Sample Injection Modes and Its Effect on the Calibration Bias in S Gas Detection by Gas Chromatography)

  • 김기현;최여진
    • 한국대기환경학회지
    • /
    • 제21권2호
    • /
    • pp.269-274
    • /
    • 2005
  • In this work, analytical bias arising from the gas chromatographic determination of sulfur compounds was evaluated by the application of direct loop injection method to the GC/PFPD detection of four sulfur compounds including H$_{2}$S, CH$_{3}$SH, DMS, and DMDS. For the proper evaluation of analytical uncertainties involved in GC calibration, we employed two comparative techniques of calibration at fxed concentration injection (CFCI) vs calibration at fixed volume injection (CFVI) method. The results of our study indicate that CFCI method exhibits very poor sensitivity due to the matrix effect with varying injection volumes. On the other hand, as CFVI method overcomes such limitation, it can be used to obtain very accurate quantification of S compounds at their high concentration levels above a few to a few tens ppb.

CO2 EXCHANGE COEFFICIENT IN THE WORLD OCEAN USING SATELLITE DATA

  • Osawa, Takahiro;Masatoshi, Akiyama;Suwa, Jun;Sugimori, Yasuhiro;Chen, Ru
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 1998년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.49-57
    • /
    • 1998
  • CO2 transfer velocity is one of the key parameters for CO2 flux estimation at air - sea interface. However, current studies show that significant inconsistency still exists in its estimation when using different models and remotely sensed data sets, which acts as one of the main uncertainties involved in the computation of CO2 exchange coefficient between air - sea interface. In this study, wind data collected from SSM/I and scatterometer onboard ERS-1, in conjunction with operational NOAA/AVHRR, are applied to different models for calculating CO2 exchange coefficient in the world ocean. Their interrelationship and discrepancies inherent with different models and satellite data are analyzed. Finally, the seasonal and inter-annual variation of CO2 exchanges coefficient for different ocean basins are presented and discussed.

  • PDF

An evolutionary algorithm for optimal damper placement to minimize interstorey-drift transfer function in shear building

  • Fujita, Kohei;Yamamoto, Kaoru;Takewaki, Izuru
    • Earthquakes and Structures
    • /
    • 제1권3호
    • /
    • pp.289-306
    • /
    • 2010
  • A gradient-based evolutionary optimization methodology is presented for finding the optimal design of viscous dampers to minimize an objective function defined for a linear multi-storey structure. The maximum value along height of the transfer function amplitudes for the interstorey drifts is taken as the objective function. Since the ground motion includes various uncertainties, the optimal damper placement may be different depending on the ground motion used for design. Furthermore, the transfer function treated as the objective function depends on the properties of structural parameters and added dampers. This implies that a more robust damper design is desired. A reliable and robust damping design system against any unpredictable ground motions can be provided by minimizing the maximum transfer function. Such design system is proposed in this paper.

게스케(Geske) 모델을 이용한 신재생에너지사업의 경제성 분석 (The Economic Evaluation of the Renewable Energy Projects using the Geske Model)

  • 심재훈
    • 산업경영시스템학회지
    • /
    • 제45권4호
    • /
    • pp.31-41
    • /
    • 2022
  • As the environmental impacts of fossil fuel energy sources increase, the South Korean government has tried to change non-environmental-friendly enery sources to environmental-friendly energy sources in order to mitigate environmental effects, which lead to global warming and air pollution. With both a limited budget and limited time, it is essential to accurately evaluate the economic and environmental effects of renewable energy projects for the efficient and effective operation of renewable energy plants. Although the traditional economic evaluation methods are not ideal for evaluating the economic impacts of renewable energy projects, they can still be used for this purpose. Renewable energy projects involve many risks due to various uncertainties. For this reason, this study utilizes a real option method, the Geske compound model, to evaluate the renewable energy projects on Jeju Island in terms of economic and environmental values. This study has developed an economic evaluation model based on the Geske compound model to investigate the influences of flexibility and uncertainty factors on the evaluation process. This study further conducts a sensitivity analysis to examine how two uncertainty factors (namely, investment cost and wind energy production) influence the economic and environmental value of renewable energy projects.