• 제목/요약/키워드: environmental uncertainties

검색결과 449건 처리시간 0.026초

해양환경하중 및 지반의 불확실성을 고려한 중력식 해상풍력 기초의 신뢰성 해석 (Reliability Analysis of Gravity-based Offshore Wind Turbine Foundation Considering Ocean Environmental Loads and Soil Uncertainty)

  • 이상근;김동현
    • 한국해양공학회지
    • /
    • 제29권5호
    • /
    • pp.359-365
    • /
    • 2015
  • A reliability analysis of the gravity-based foundation of anoffshore wind turbine was performed by considering the uncertainties of the design variables, including environmental loads. The limit state functions of the gravity-based foundation were defined using the response limits of the support structures suggested in the DNV standard. The wind load couldbe obtained using the GH_bladed software, and the wave load was calculated using the Morison equation. Then, the extreme distributions of the wind and wave loads were estimated by applying the peak over threshold (POT) method to the wind and wave load data. The probability distribution characteristics of the soil properties were defined with reference to a southwest coast geotechnical survey report. The reliability index was evaluated for each failure mode using a first-order reliability method.

CGCM의 미래 기후 정보를 이용한 기후변화가 낙동강 유역 유황에 미치는 영향분석 (An Analysis of the Effect of Climate Change on Nakdong River Flow Condition using CGCM ' s Future Climate Information)

  • 김문성;고익환;김상단
    • 한국물환경학회지
    • /
    • 제25권6호
    • /
    • pp.863-871
    • /
    • 2009
  • For the assessment of climate change impacts on river flow condition, CGCM 3.1 T63 is selected as future climate information. The projections come from CGCM used to simulate the GHG emission scenario known as A2. Air temperature and precipitation information from the GCM simulations are converted to regional scale data using the statistical downscaling method known as MSPG. Downscaled climate data from GCM are then used as the input data for the modified TANK model to generate regional runoff estimates for 44 river locations in Nakdong river basin. Climate change is expected to reduce the reliability of water supplies in the period of 2021~2030. In the period of 2051~2060, stream flow is expected to be reduced in spring season and increased in summer season. However, it should be noted that there are a lot of uncertainties in such multiple-step analysis used to convert climate information from GCM-based future climate projections into hydrologic information.

지하수 조사에서 환경추적자로서의 $SF_6$의 적용

  • 고동찬;;;김용제
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2003년도 총회 및 춘계학술발표회
    • /
    • pp.73-76
    • /
    • 2003
  • SF$_{6}$ (Sulfur Hexafluoride) is a gaseous compound whose use is being greatly increased recently. The compound has a negligible background concentration from natural sources and is stable in most of groundwater environments. Therefore, SF$_{6}$ has potential for a dating tool for young groundwater. It has many advantages over chlorofluorocarbons (CFCs) for groundwater investigation that sampling procedure is much simpler than CFCs and its growth is continued up to at least near future in the atmosphere. However, solubility of SF$^{6}$ is so low that excess air causes large uncertainties in recharge date of groundwater. To compensate the limitation, $N_2$/Ar method can be employed to estimate excess air content. A groundwater study is currently carrying out in Jeju Island using SF$_{6}$ as an environmental tracer, Well waters and spring waters were sampled for SF$_{6}$ and $N_2$/Ar. To establish SF$_{6}$ input history in the study area, air sampling is being conducted in the area near the center of the island on a monthly and weekly basis. Based on the present data, the level of SF$_{6}$ concentration in the atmosphere of the Island is corresponding to the trend of the Northern Hemisphere.

  • PDF

Prediction Model of Final Project Cost using Multivariate Probabilistic Analysis (MPA) and Bayes' Theorem

  • Yoo, Wi Sung;Hadipriono, FAbian C.
    • 한국건설관리학회논문집
    • /
    • 제8권5호
    • /
    • pp.191-200
    • /
    • 2007
  • This paper introduces a tool for predicting potential cost overrun during project execution and for quantifying the uncertainty on the expected project cost, which is occasionally changed by the unknown effects resulted from project's complications and unforeseen environments. The model proposed in this stuff is useful in diagnosing cost performance as a project progresses and in monitoring the changes of the uncertainty as indicators for a warning signal. This model is intended for the use by project managers who forecast the change of the uncertainty and its magnitude. The paper presents a mathematical approach for modifying the costs of incomplete work packages and project cost, and quantifying reduced uncertainties at a consistent confidence level as actual cost information of an ongoing project is obtained. Furthermore, this approach addresses the effects of actual informed data of completed work packages on the re-estimates of incomplete work packages and describes the impacts on the variation of the uncertainty for the expected project cost incorporating Multivariate Probabilistic Analysis (MPA) and Bayes' Theorem. For the illustration purpose, the Introduced model has employed an example construction project. The results are analyzed to demonstrate the use of the model and illustrate its capabilities.

Self-adaptive sampling for sequential surrogate modeling of time-consuming finite element analysis

  • Jin, Seung-Seop;Jung, Hyung-Jo
    • Smart Structures and Systems
    • /
    • 제17권4호
    • /
    • pp.611-629
    • /
    • 2016
  • This study presents a new approach of surrogate modeling for time-consuming finite element analysis. A surrogate model is widely used to reduce the computational cost under an iterative computational analysis. Although a variety of the methods have been widely investigated, there are still difficulties in surrogate modeling from a practical point of view: (1) How to derive optimal design of experiments (i.e., the number of training samples and their locations); and (2) diagnostics of the surrogate model. To overcome these difficulties, we propose a sequential surrogate modeling based on Gaussian process model (GPM) with self-adaptive sampling. The proposed approach not only enables further sampling to make GPM more accurate, but also evaluates the model adequacy within a sequential framework. The applicability of the proposed approach is first demonstrated by using mathematical test functions. Then, it is applied as a substitute of the iterative finite element analysis to Monte Carlo simulation for a response uncertainty analysis under correlated input uncertainties. In all numerical studies, it is successful to build GPM automatically with the minimal user intervention. The proposed approach can be customized for the various response surfaces and help a less experienced user save his/her efforts.

해수담수화 시장의 전망(정삼투-역삼투 융합기술 측면에서) (The Outlook for Forward Osmosis-Reverse Osmosis (FO-RO) Hybrid Desalination Market)

  • 김자겸;한지희;손진식;김승현
    • 상하수도학회지
    • /
    • 제30권5호
    • /
    • pp.521-532
    • /
    • 2016
  • Seawater desalination market after global economic crisis has been stalled due to the market uncertainties and decreased demand in desalination. It is important to review the status of the market and to estimate the appropriate share of Forward osmosis-Reverse Osmosis (FO-RO) hybrid desalination technology by figuring out the outlook of the desalination market. Main part of the desalination market will still be MENA (Middle East and North Africa) in the near future due to the fast population increase and high dependency of fossil fuel in the region. The market for FO-RO hybrid technology, however, might be smaller than the conventional SWRO desalination market anyway because of aesthetic issues from using wastewater as raw water and higher costs associated with capex. Therefore, it is essential to improve FO membrane performance and system operation technologies in order to make the hybrid technology attractive compared to the conventional SWRO technology.

An Extended Model Evaluation Method under Uncertainty in Hydrologic Modeling

  • Lee, Giha;Youn, Sangkuk;Kim, Yeonsu
    • 한국지반환경공학회 논문집
    • /
    • 제16권5호
    • /
    • pp.13-25
    • /
    • 2015
  • This paper proposes an extended model evaluation method that considers not only the model performance but also the model structure and parameter uncertainties in hydrologic modeling. A simple reservoir model (SFM) and distributed kinematic wave models (KWMSS1 and KWMSS2 using topography from 250-m, 500-m, and 1-km digital elevation models) were developed and assessed by three evaluative criteria for model performance, model structural stability, and parameter identifiability. All the models provided acceptable performance in terms of a global response, but the simpler SFM and KWMSS1 could not accurately represent the local behaviors of hydrographs. Moreover, SFM and KWMSS1 were structurally unstable; their performance was sensitive to the applied objective functions. On the other hand, the most sophisticated model, KWMSS2, performed well, satisfying both global and local behaviors. KMSS2 also showed good structural stability, reproducing hydrographs regardless of the applied objective functions; however, superior parameter identifiability was not guaranteed. A number of parameter sets could result in indistinguishable hydrographs. This result indicates that while making hydrologic models complex increases its performance accuracy and reduces its structural uncertainty, the model is likely to suffer from parameter uncertainty.

A fuzzy expert system for diagnosis assessment of reinforced concrete bridge decks

  • Ramezanianpour, Ali Akbar;Shahhosseini, Vahid;Moodi, Faramarz
    • Computers and Concrete
    • /
    • 제6권4호
    • /
    • pp.281-303
    • /
    • 2009
  • The lack of safety of bridge deck structures causes frequent repair and strengthening of such structures. The repair induces great loss of economy, not only due to direct cost by repair, but also due to stopping the public use of such structures during repair. The major reason for this frequent repair is mainly due to the lack of realistic and accurate assessment system for the bridge decks. The purpose of the present research was to develop a realistic expert system, called Bridge Slab-Expert which can evaluate reasonably the condition as well as the service life of concrete bridge decks, based on the deterioration models that are derived from both the structural and environmental effects. The diagnosis assessment of deck slabs due to structural and environmental effects are developed based on the cracking in concrete, surface distress and structural distress. Fuzzy logic is utilized to handle uncertainties and imprecision involved. Finally, Bridge Slab-Expert is developed for prediction of safety and remaining service life based on the chloride ions penetration and fick's second law. Proposed expert system is based on user-friendly GUI environment. The developed expert system will allow the correct diagnosis of concrete decks, realistic prediction of service life, the determination of confidence level, the description of condition and the proposed action for repair.

최적화 기법에 의한 발전시뮬레이션 방법론의 개발 및 전원확충계획 문제에의 적용 (The Development of Production Simulation Methodology by Optimization Technique and It's Application to Utility Expansion Planning)

  • 송길영;오광해;김용하;차준민
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 B
    • /
    • pp.793-796
    • /
    • 1996
  • This study proposes a new algorithm which performs a production simulation under various constraints and maintains computational efficiency. In order to consider the environmental and operational constraints, the proposed algorithm is based on optimization techniques formulated in LP form In the algorithm, "system characteristic constraints" reflect the system characteristics such as LDC shape, unit loading order and forced outage rate. By using the concept of Energy Invariance Property and two operational rules i.e. Compliance Rule for Emission Constraint, Compliance Rule for Limited Energy of Individual Unit, the number of system characteristic constraints is appreciably reduced. As a solution method of the optimization problem, the author uses Karmarkar's method which performs effectively in solving large scale LP problem. The efficiency of production simulation is meaningful when it is effectively used in power system planning. With the proposed production simulation algorithm, an optimal expansion planning model which can cope with operational constraints, environmental restriction, and various uncertainties is developed. This expansion planning model is applied to the long range planning schemes by WASP, and determines an optimal expansion scheme which considers the effect of supply interruption, load forecasting errors, multistates of unit operation, plural limited energy plants etc.

  • PDF

준분포형 유역모델 STREAM을 이용한 기후변화가 농업유역의 하천유량에 미치는 영향 분석 (Analysis of Impact of Climate Change on River Flows in an Agricultural Watershed Using a Semi-distributed Watershed Model STREAM)

  • 정의상;조홍래
    • 한국물환경학회지
    • /
    • 제35권2호
    • /
    • pp.131-144
    • /
    • 2019
  • Climate Change affects the hydrological cycle in agricultural watersheds through rising air temperature and changing rainfall patterns. Agricultural watersheds in Korea are characterized by extensive paddy fields and intensive water use, a resource that is under stress from the changing climate. This study analyzed the effects of climate change on river flows for Geum Cheon and Eun-San Choen watershed using STREAM, a semi-distributed watershed model. In order to evaluate the performance and improve the reliability of the model, calibration and validation of the model was done for one flow observation point and three reservoir water storage ratio points. Climate change scenarios were based on RCP data provided by the Korea Meteorological Administration (KMA) and bias corrections were done using the Quantile Mapping method to minimize the uncertainties in the results produced by the climate model to the local scale. Because of water mass-balance, evapotranspiration tended to increase steadily with an increase in air temperature, while the increase in RCP 8.5 scenario resulted in higher RCP 4.5 scenario. The increase in evapotranspiration led to a decrease in the river flow, particularly the decrease in the surface runoff. In the paddy agricultural watershed, irrigation water demand is expected to increase despite an increase in rainfall owing to the high evapotranspiration rates occasioned by climate change.