• 제목/요약/키워드: environmental temperature

검색결과 9,883건 처리시간 0.047초

Temperature effects on the growth and morphology of Anabaena sp.: lab-scale investigation and onsite validation

  • Oh Kyung Choi;Dong Hyuk Shin;Dandan Dong;Sung Kyu Maeng;Jungsu Park;Jae Woo Lee
    • Membrane and Water Treatment
    • /
    • 제15권1호
    • /
    • pp.11-19
    • /
    • 2024
  • This study presents the characteristics of growth and morphology of Anabaena sp., a representative filamentous cyanobacterium, depending on temperature variation from 10 to 30 ℃. Both the filament density (or number) and its length of Anabaena were highly affected by temperature, as well as growth stage. Rapid growth at a higher temperature led to an increase in Anabaena filament density, as well as optical density at 680 nm (OD680). However, the number of vegetative cells within a single filament of Anabaena grown at 30 ℃ was smaller than those grown at lower temperatures, due to the intercalary division of the filament. Of the three different cells comprising a single Anabaena filament, the vegetative cell marginally affects the growth of Anabaena. The main dimensions of the vegetative cell, i.e., length and width, depend on the temperature and growth stage. The length-to-width (L/W) ratios of vegetative cells and akinetes were relatively consistent regardless of the temperature. However, in vegetative cells with dichotomous growth, the L/W ratio shows clear differences depending on their growth stage. It has been demonstrated that the L/W ratio could be used as an indicator to indirectly predict the growth stage of on-sit Anabaena samples.

산업 발생 노르말헥산과 벤젠 증기의 저온 분해 (Low-Temperature Thermal Decomposition of Industrial N-Hexane and Benzene Vapors)

  • 조완근;이준엽;강정환;신승호;권기동;김모근
    • 한국환경과학회지
    • /
    • 제15권7호
    • /
    • pp.635-642
    • /
    • 2006
  • Present study evaluated the low-temperature destruction of n-hexane and benzene using mesh-type transition-metal platinum(Pt)/stainless steel(SS) catalyst. The parameters tested for the evaluation of catalytic destruction efficiencies of the two volatile organic compounds(VOC) included input concentration, reaction time, reaction temperature, and surface area of catalyst. It was found that the input concentration affected the destruction efficiencies of n-hexane and benzene, but that this input-concentration effect depended upon VOC type. The destruction efficiencies increased as the reaction time increased, but they were similar between two reaction times for benzene(50 and 60 sec), thereby suggesting that high temperatures are not always proper for thermal destruction of VOCs, when considering the destruction efficiency and operation costs of thermal catalytic system together. Similar to the effects of the input concentration on destruction efficiency of VOCs, the reaction temperature influenced the destruction efficiencies of n-hexane and benzene, but this temperature effect depended upon VOC type. As expected, the destruction efficiencies of n-hexane increased as the surface area of catalyst, but for benzene, the increase rate was not significant, thereby suggesting that similar to the effects of the re- action temperature on destruction efficiency of VOCs, high catalyst surface areas are not always proper for economical thermal destruction of VOCs. Depending upon the inlet concentrations and reaction temperatures, almost 100% of both n-hexane and benzene could be destructed, The current results also suggested that when applying the mesh type transition Metal Pt/SS catalyst for the better catalytic pyrolysis of VOC, VOC type should be considered, along with reaction temperature, surface area of catalyst, reaction time and input concentration.

Subjective Responses to Thermal Stress for the Outdoor Performance of Smart Clothes

  • Kwon, JuYoun;Parsons, Ken
    • 대한인간공학회지
    • /
    • 제36권3호
    • /
    • pp.169-181
    • /
    • 2017
  • Objective: The aim of this study was to explore the influence of outdoor weather conditions on subjective responses during physical activity. Background: The largest difference between indoor and outdoor conditions is the existence of the sun. The heat load from the sun has an influence on the heat gain of the human body and the intense degree of solar radiation affected thermal comfort. Method: Thirty eight people were exposed to a range of climatic conditions in the UK. Weather in England does not have extremely hot and cold temperature, and the current study was conducted under warm (summer and autumn) and cool (spring and summer) climates. Measurements of the climate included air temperature, radiant temperature (including solar load), humidity and wind around the subjects. Subjective responses were taken and physiological measurements included internal body temperature, heart rate and sweat loss. Results: This study was conducted under four kinds of environmental conditions and the environmental measurement was performed in September, December, March, and June. The values for sensation, comfort, preference, and pleasantness about four conditions were from 'neutral' to 'warm', from 'not uncomfortable' to 'slightly comfortable', from 'slightly cooler' to 'slightly warmer', and from 'neither pleasant nor unpleasant' and 'slightly unpleasant', respectively. All subjective responses showed differences depending on air temperature and wind speed, and had correlations with air temperature and wind speed (p<0.05). However, subjective responses showed no differences depending on the radiant temperature. The combined effects of environmental parameters were showed on some subjective responses. The combined effects of air temperature and radiant temperature on thermal sensation and pleasantness were significant. The combined effects of metabolic rate with air temperature, wind speed and solar radiation respectively have influences on some subjective responses. In the case of the relationships among subjective responses, thermal sensation had significant correlations with all subjective responses. The largest relationship was shown between preference and thermal sensation but acceptance showed the lowest relationship with the other subjective responses. Conclusion: The ranges of air temperature, radiant temperature, wind speed and solar radiation were $6.7^{\circ}C$ to $24.7^{\circ}C$, $17.9^{\circ}C$ to $56.6^{\circ}C$, $0.84ms^{-1}$ to $2.4ms^{-1}$, and $123Wm^{-2}$ to $876Wm^{-2}$ respectively. Each of air temperature and wind speed had significant relationships with subjective responses. The combined effects of environmental parameters on subjective responses were shown. Each radiant temperature and solar radiation did not show any relationships with subjective responses but the combinations of each radiant temperature and solar radiation with other environmental parameters had influences on subjective responses. The combinations of metabolic rate with air temperature, wind speed and solar radiation respectively have influences on subjective responses although metabolic rate alone hardly made influences on them. There were also significant relationships among subjective responses, and pleasantness generally showed relatively high relationships with comfort, preference, acceptance and satisfaction. Application: Subjective responses might be utilized to predict thermal stress of human and the application products reflecting human subjective responses might apply to the different fields such as fashion technology, wearable devices, and environmental design considering human's response etc.

서울시 미세먼지(PM10)로 인한 사망영향에 대한 기온의 수정효과 (Temperature Modifies the Association between PM10 and Mortality in Seoul)

  • 배현주;임유라;유승도;김정화;조용성
    • 한국환경보건학회지
    • /
    • 제39권1호
    • /
    • pp.90-98
    • /
    • 2013
  • Objectives: Many studies have shown that air pollution and temperature have adverse effects on mortality and morbidity. But the interactive effect between air pollution and temperature on mortality has been rarely investigated. This study aims to explore whether temperature modifies the associations between ambient particulate matter less than $10{\mu}m$ in diameter ($PM_{10}$) and mortality in Seoul, Korea. Methods: The time-series analysis examined the effect of the interaction between $PM_{10}$ and temperature on mortality from 1999 to 2010 in Seoul. In order to examine the interactive effect between $PM_{10}$ and temperature on mortality, we fitted a response surface model controlling the time-trends and meteorological variables. The effects of $PM_{10}$ were stratified by temperature stratum to quantitatively estimate the $PM_{10}$-health outcome associations. Results: When temperature was low (below the threshold temperature), the percentage increases per $10{\mu}g/m^3$ increase of $PM_{10}$ increased 0.38% (95% Confidence Interval[CI]: 0.09~0.68%) and 0.31% (95% CI: - 0.07~0.68%) of mortality in the all age group and ${\geq}65$ year age group, respectively. When temperature was high (above the threshold temperature), the percentage increases per $10{\mu}g/m^3$ increase of $PM_{10}$ increased 1.09% (95% CI: 0.47~1.72%) and 1.35% (95% CI: 0.65~2.06%) for mortality in the all age group and ${\geq}65$ year age group, respectively. Conclusion: The results of this study showed strong modification by temperature in the association between $PM_{10}$ and mortality. We recommend that public health strategies to minimize adverse health impact of heat and $PM_{10}$ should be considered in control and prevention measures for air pollution and weather-related health impacts.

공정 온도에 따른 사면체 비정질 카본 (ta-C) 코팅의 트라이볼로지적 특성연구 (Effects of Process Temperature on the Tribological Properties of Tetrahedral Amorphous Carbon (ta-C) Coating)

  • 강용진;김도현;류호준;김종국;장영준
    • Tribology and Lubricants
    • /
    • 제35권6호
    • /
    • pp.362-368
    • /
    • 2019
  • In this study, mechanical and tribological properties were investigated by varying the process temperature (50, 100, 125 and 150℃) to reduce internal stress. The internal stress reduction by thermal dissociation ta-C coating film with increasing temperature is confirmed through the curvature radius of the ta-C coating according to the temperature of the SUS plate. As the coating temperature increased, the mechanical properties (hardness, modulus, toughness) deteriorated, which is in agreement with the Raman analysis results. As the temperature increased, the sp2 phase ratio increased owing to the dissociation of the sp3 phase. The friction and wear properties are related to the process temperature during ta-C coating. Low friction and wear properties are observed in high hardness samples manufactured at 50℃, and wear resistance properties decreased with increasing temperature. The contact area is expected to increase owing to the decrease of hardness(72 GPa to 39 GPa) and fracture toughness with increasing temperature which accelerated wear because of the debris generated. It was confirmed that at process temperature of over than 100℃, the bond structure of the carbon film changed, and the effect of excellent internal stress was reduced. However, the wear resistance simultaneously decreased owing to the reduction in fracture toughness. Therefore, in order to increase industrial utilization, optimum temperature conditions that reduce internal stress and retain mechanical properties.

상온저장 시설의 환경 제어 시스템 개발 (Development of an Environmental Control System for Agricultural Storage Facility)

  • 임종환;현명택
    • 한국식품저장유통학회지
    • /
    • 제4권2호
    • /
    • pp.101-113
    • /
    • 1997
  • Temperature, relative humidity and ventilation are closely related one another, and they are the main factors to be controlled for the environmental control system of a storage facility. Conventional environmental control systems do not consider the interrelationship between temperature, relative humidity and ventilation, which results in low performance and high energy consumption. To overcome the inefficiency of the conventional ones, it was developed an on-off control system based on the interrelationship between the factors. The usefulness of the system was illustrated with the results produced by a set of experiments in a real world.

  • PDF

탄화 온도에 의한 목탄의 특성 (Characteristics of Charcoal in Different Carbonization Temperatures)

  • 권성민;권구중;장재혁;김남훈
    • Journal of Forest and Environmental Science
    • /
    • 제28권4호
    • /
    • pp.263-267
    • /
    • 2012
  • Characteristics of charcoals manufactured in each temperature as 400, 600 800, 1,000 and $1,200^{\circ}C$ were examined. Sapwood and heartwood of Quercus variabilis that one of major species in charcoal materials were used for this experiment. Charcoal density was decreased highly 38-60% compared with wood density and density of sapwood was slightly decreased but heartwood was not changed with increasing carbonization temperature increase. Weight loss of sapwood and heartwood charcoal increased as carbonization temperature increases, and there is no difference between sapwood and heartwood charcoal. Refining degree of sapwood and heartwood charcoal was zero in charring over $800^{\circ}C$. Moisture and ash of sapwood and heartwood charcoal in each carbonization temperature were not differed between sapwood and heartwood. Volatile of sapwood charcoal was slightly higher than that of heartwood, and decreased as carbonization temperature increases. As the carbonization temperature increased, fixed carbon of sapwood and heartwood charcoal increased. Calorific values of charcoal prepared at $600^{\circ}C$ were 7,200-7,300 cal/g and then decreased slightly as carbonization temperature increased.

Effect of Temperature Change on the Respiration Characteristics of Vegetables

  • Kawagoe, Yoshinori;Seo, Yasuhisa;Oshita, Sei-Ichi;Sagara, Yasuyuki
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 1996년도 International Conference on Agricultural Machinery Engineering Proceedings
    • /
    • pp.947-952
    • /
    • 1996
  • The effect of fluctuating temperature on the respiration of vegetables has been investigated. Spinach was selected as the experimental material because of its high respiratory activity and kept under the condition that temperature changed alternately at low and high levels every 4 hours. The low-high level temperature combination was set in $1-10^{\circ}C,{\;}1-20^{\circ}C{\;}and{\;}1-30^{\circ}C$. Respiration was evaluated in terms of quantity of $CO_2$ evolved from spinach. The evolution rate of $CO_2$ was determined by a change in its concentration. The evaluation rate of $CO_2$ followed closely the temperature change. In the temperature combinations at $1-10^{\circ}C{\;}and{\;}1-20^{\circ}C$, the relationship between $CO_2$ evolution rate and temperature was found to be able to express by Arrhenius law, while at $1-30^{\circ}C$, it did not obey the law.

  • PDF

Temperature distribution behaviors of GFRP honeycomb hollow section sandwich panels

  • Kong, B.;Cai, C.S.;Pan, F.
    • Structural Engineering and Mechanics
    • /
    • 제47권5호
    • /
    • pp.623-641
    • /
    • 2013
  • The fiber-reinforced polymer (FRP) composite panel, with the benefits of light weight, high strength, good corrosion resistance, and long-term durability, has been considered as one of the prosperous alternatives for structural retrofits and replacements. Although with these advantages, a further application of FRPs in bridge engineering may be restricted, and that is partly due to some unsatisfied thermal performance observed in recent studies. In this regard, Kansas Department of Transportation (DOT) conducted a field monitoring program on a bridge with glass FRP (GFRP) honeycomb hollow section sandwich panels. The temperatures of the panel surfaces and ambient air were measured from December 2002 to July 2004. In this paper, the temperature distributing behaviors of the panels are firstly demonstrated and discussed based on the field measurements. Then, a numerical modeling procedure of temperature fields is developed and verified. This model is capable of predicting the temperature distributions with the local environmental conditions and material's thermal properties. Finally, a parametric study is employed to examine the sensitivities of several temperature influencing factors, including the hollow section configurations, environmental conditions, and material properties.